Title page for ETD etd-0103100-220644

Type of Document Master's Thesis
Author Vines, John Ashley
URN etd-0103100-220644
Title Emplacement of the Santa Rita Flat pluton and kinematic analysis of cross cutting shear zones, eastern California
Degree Master of Science
Department Geological Sciences
Advisory Committee
Advisor Name Title
Law, Richard D. Committee Chair
Glazner, Allen Committee Member
Sinha, A. Krishna Committee Member
Spotila, James A. Committee Member
  • Kinematic Analysis
  • Shear Zones
  • Pluton Emplacement
  • White-Inyo Range
  • Transpression
  • Deformation Mechanisms
Date of Defense 1999-12-14
Availability restricted
This study documents the deformation history of the Santa Rita Flat pluton, eastern California, from the time of emplacement to post-emplacement transpressional shearing, and consists of manuscripts that make up three chapters. The first chapter addresses the emplacement of the Santa Rita Flat pluton using anisotropy of magnetic susceptibility (AMS). The second chapter describes the kinematic analysis of cross-cutting shear zones within the western margin of the pluton. The third chapter is an informal paper on the U/Pb dating of two sheared felsic dikes from the pluton.

AMS of the Santa Rita Flat pluton indicates that the paramagnetic and ferromagnetic minerals define a foliation which is arched into an antiformal structure in the central to southern parts of the pluton. The northern part of the pluton displays an east-west striking magnetic foliation which lacks a fold-like geometry. Previously published field mapping and petrologic surveys of the pluton and surrounding wall rocks indicate that the southern margin and northern part of the Santa Rita Flat pluton represents the roof and core of the pluton, respectively.

Integration of our analysis of the internal structure of the pluton with previously published work on the regional structure of the surrounding metasedimentary wall rocks, suggests that the pluton may have initially been intruded as a sill-like or "saddle reef" structure along a stratigraphically controlled mechanical discontinuity in the hinge zone of an enveloping regional-scale synform. Subsequent vertical inflation of this sill resulted in local upward doming of the overlying pluton roof and formation of the antiformal structure now observed at the current erosion level in the central-southern part of the pluton and overlying locally preserved roof rocks. No corresponding fold structure is indicated by AMS analysis in the northern part of the pluton, which is exposed at a deeper level, and represents a section closer to the pluton core.

Emplacement of the Santa Rita Flat pluton at 164 Ma overlaps in time with regional deformation at ~185 - ~148 Ma (Middle - Late Jurassic) recognized in the southern Inyo Mountains. Northwest trending folds are pervasive along the western flank of the Inyo and White Mountains, and may have accommodated strains at the lateral tips of thrust faults which crop out in the southern Inyo Mountains. We speculate that space for initial emplacement of the Santa Rita Flat pluton may have been produced by layer-parallel slip and hinge-zone dilation, accompanied by axis-parallel slip during formation of a regional scale thrust-related synform.

The Santa Rita shear system (SRSS) is composed of a series of discrete NW-SE striking steeply dipping shear zones that cut and plastically deform granitic rocks of the Santa Rita Flat pluton. The shear zones exhibit a domainal distribution of gently and steeply plunging stretching lineations, and are located at planar mechanical discontinuities between the granite and a series of felsic/mafic dikes which intrude the pluton. Mylonitized dikes within the shear zones contain syntectonic mineral assemblages not observed in dikes outside the shear zones, indicating that the dikes were intruded prior to shear zone development. Correlation with geometrically similar shear zones in the Sierra Nevada batholith to the west, suggests that the SRSS probably nucleated from a regional stress field in Cretaceous times (~90-78 Ma).

Strain is heterogeneous within the shear zones, with local development of protomylonite, mylonite, ultramylonite and phyllonite. Strain heterogeneity within the granite is attributed to fluid infiltration and chemical reaction and alteration of feldspar to fine-grained mica. These deformation-induced mineral changes would have resulted in progressive mechanical weakening over time of rocks within the SRSS. The phyllonites occur predominantly within steeply lineated shear zones and contain mylonitized foliation-parallel quartz veins. The pattern of c-axis preferred orientation in these quartz veins indicates that deformation within the shear zones occurred under plane strain conditions. Locally, quartz veins also cut the foliation planes, reflecting high pore fluid pressures during evolution of the SRSS. These cross-cutting quartz veins are also plastically deformed, and their c-axis patterns indicate weak constrictional strains. The orientation of the shear zones, together with their strain paths, are used to develop a transpressional kinematic model for development of the SRSS within a progressively rotating stress field.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] JAVThesis.pdf 17.95 Mb 01:23:06 00:42:44 00:37:23 00:18:41 00:01:35
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.