Title page for ETD etd-01092006-152103

Type of Document Master's Thesis
Author Brumbaugh, Scott J
URN etd-01092006-152103
Title Development of a Methodology to Measure Aerodynamic Forces on Pin Fins in Channel Flow
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Thole, Karen A. Committee Chair
Paul, Mark R. Committee Member
Vlachos, Pavlos P. Committee Member
  • internal cooling
  • pressure drop
  • cylinder drag
  • pin fin
  • lift
  • force measurement
Date of Defense 2006-01-05
Availability unrestricted
The desire for smaller, faster, and more efficient products places a strain on thermal management in components ranging from gas turbine blades to computers. Heat exchangers that utilize internal cooling flows have shown promise in both of these industries. Although pin fins are often placed in the cooling channels to augment heat transfer, their addition comes at the expense of increased pressure drop. Consequently, the pin fin geometry must be judiciously chosen to achieve the desired heat transfer rate while minimizing the pressure drop and accompanying pumping requirements.

This project culminates in the construction of a new test facility and the development of a unique force measurement methodology. Direct force measurement is achieved with a cantilever beam force sensor that uses sensitive piezoresistive strain gauges to simultaneously measure aerodynamic lift and drag forces on a pin fin. After eliminating the detrimental environmental influences, forces as small as one-tenth the weight of a paper clip are successfully measured.

Although the drag of an infinitely long cylinder in uniform cross flow is well documented, the literature does not discuss the aerodynamic forces on a cylinder with an aspect ratio of unity in channel flow. Measured results indicate that the drag coefficient of a cylindrical pin in a single row array is greater than the drag coefficient of an infinite cylinder in cross flow. This phenomenon is believed to be caused by an augmentation of viscous drag on the pin fin induced by the increased viscous effects inherent in channel flow.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  thesis_r2.pdf 5.68 Mb 00:26:17 00:13:31 00:11:49 00:05:54 00:00:30

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.