Title page for ETD etd-02282012-140915

Type of Document Dissertation
Author Fortenberry, Ryan Clifton
Author's Email Address r410@vt.edu
URN etd-02282012-140915
Title Theoretical Prediction of Electronically Excited States and Vibrational Frequencies of Interstellar and Planetary Radicals, Anions, and Cations
Degree PhD
Department Chemistry
Advisory Committee
Advisor Name Title
Crawford, Daniel T. Committee Chair
Madsen, Louis A. Committee Member
Tanko, James M. Committee Member
Troya, Diego Committee Member
Valeyev, Eduard Faritovich Committee Member
  • anions
  • cations
  • radicals
  • quartic force fields
  • dipole-bound states
  • astrochemistry
  • coupled cluster theory
  • theoretical chemistry
Date of Defense 2012-02-21
Availability unrestricted
In the search for molecular species in the interstellar medium and extraterrestrial planetary atmospheres, theoretical methods continue to be an invaluable tool to astronomically minded chemists. Using state-of-the art methods, this doctoral work characterizes the electronically excited states of interstellar radicals, cations, and even rare anions and also predicts the gas phase fundamental vibrational frequencies of the cis and trans-HOCO radicals, as well as the cis-HOCO anion. First, open-shell coupled cluster methods of singles and doubles (CCSD) and singles and doubles with triples-inclusion (CC3) are tested on the C2H and C4H radicals. The significant double-excitation character, as well as the quartet multiplicity of some states yields inaccurate excitation energies and large spin contamination with CCSD. CC3 somewhat improves this for select states, but discrepancies between CC and multiref- erence results for certain states exist and likely arise from the lack of spin adaptation in conventional spin-orbital CC. Next, coupled-cluster methods predict the presence of an ex- cited state of the closed-shell allyl cation and its related H2CCCHCH2+ cousin at 443 nm near an unidentified laboratory peak at 442.9 nm which is also close to one of the largest unattributed interstellar absorption features. Additionally, the dipole moments, electron binding energies, and excited states of neutral radicals and corresponding closed-shell anions of interstellar interest are also computed. These are calibrated against experimental data for CH2CN− and CH2CHO−. Since coupled cluster theory closely reproduces the known experimental data, dipole-bound excited states for eight previously unknown anions are pre- dicted: CH2SiN−, SiH2CN−, CH2SiHO−, SiN−, CCOH−, HCCO−, SiCCN−, and SiNC−. In addition, we predict the existence of one rare valence-bound excited state of CH2SiN− and


also SiCCN− as well as even rarer two valence-bound states of CCSiN−. Lastly, the reaction of CO + OH and its transient potential intermediate, the HOCO radical, may be responsible for the regeneration of CO2 in the Martian atmosphere, but past spectroscopic observations have not produced a full gas-phase set of the fundamental vibrational frequencies of the HOCO radical. Using established, highly-accurate quantum chemical coupled cluster tech- niques and quartic force fields, all six fundamental vibrational frequencies for 1 2A′ cis and trans-HOCO and 1 1A′ cis-HOCO− are computed in the gas phase.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Fortenberry_RC_D_2012.pdf 6.67 Mb 00:30:52 00:15:52 00:13:53 00:06:56 00:00:35
  Fortenberry_RC_D_2012_Copyright.pdf 223.81 Kb 00:01:02 00:00:31 00:00:27 00:00:13 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.