Title page for ETD etd-02898-16741

Type of Document Master's Thesis
Author Saunders, Christopher A. II
Author's Email Address chsaund4@vt.edu
URN etd-02898-16741
Title Noise Reduction in an Axisymmetric Supersonic Aircraft Inlet using Trailing Edge Blowing
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Ng, Fai Committee Chair
Burdisso, Ricardo A. Committee Member
Dancey, Clinton L. Committee Member
Fleming, J. L. Committee Member
  • Turbomachinery
  • Noise
  • Aeroacoustics
  • Struts
Date of Defense 1998-01-21
Availability unrestricted
Acoustic experiments were conducted in an anechoic chamber with a 1/14th scale model of a supersonic aircraft engine inlet using Trailing Edge Blowing (TEB) to reduce the engine fan noise from a turbofan propulsion simulator (TPS). The TPS is 4.1 in. (10.4 cm) in diameter and is powered by compressed air. The supersonic inlet is connected to the TPS and is geometrically and acoustically scaled from a working design. The supersonic inlet is operated in a takeoff or landing operating condition where the inlet core flow is subsonic. TEB is the process of ejecting high pressure air to re-energize the wakes of upstream fan disturbances such as struts or inlet guide vanes (IGV). The elimination of the wakes will provide a uniform flow field at the engine fan face and reduce noise at the blade passing frequency. The TEB was implemented on six non-uniformly spaced support struts in the inlet. Acoustic tests were then performed at 40%, 60% and 88% of the fan design speed (PNC) to measure the reduction in the blade passing tone (BPT) due to TEB from the struts with and without the presence of IGV.

The noise reductions without IGV at 40 PNC show the best results with the blade passing tone (BPT) being reduced by an average of 3.1 dB. The first harmonic of the BPT and the overall Sound Pressure Level (SPL) were also reduced by 1 dB. The addition of the IGV in the inlet reduced the effectiveness of the TEB. The addition of IGV changed the reduction in BPT at 40 PNC by 0.5 dB and the overall SPL was unchanged. At 60 PNC the addition of IGV reduced the reduction due to TEB in the BPT from an average of 2 dB to an average of 1 dB. The tests performed at 88 PNC showed negligible effects due to TEB. Aerodynamic experiments performed on the inlet that showed that the wakes of the IGV have a larger velocity defect than the struts, thus making the IGV a greater noise source.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  ETD.PDF 2.11 Mb 00:09:46 00:05:01 00:04:23 00:02:11 00:00:11

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.