Title page for ETD etd-03022010-020047

Type of Document Master's Thesis
Author Echenagucia, Jorge Enrique
URN etd-03022010-020047
Title Injection molding of shotgun shells
Degree Master of Science
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Fricke, A. L. Committee Chair
Hassler, John C. Committee Member
Stinchcomb, Wayne W. Committee Member
Ward, Thomas C. Committee Member
  • molds
Date of Defense 1975-02-05
Availability restricted

In this investigation, the possibility of producing injection molded shotgun shells was explored. Also, the molding cycle and the effect of molding conditions on the mechanical properties of molded parts were investigated.

The polymer obtained from a commercial brand of shotgun shells was analyzed using infrared spectroscopy and differential thermal analysis. The results from the analyses revealed that polyethylene was the main component used in the manufacture of commercial shotgun shells.

An injection mold with automatic ejector mechanism was designed. Before attempting to construct the mold a computer simulation was developed to predict if the "most difficult to fill" cavity, i.e., the shotgun shell cavity, could be completely filled with the injection molding equipment at hand. The simulation predicted the axial distance filled in the shotgun shell cavity within 1%.

The injection molder used in this investigation was interfaced with a PDP 8/e minicomputer; as a result the pressure and temperature of the polymer in the mold were monitored and the minimum molding cycle could be determined.

Tensile, compressive and bursting strength tests were performed on injection molded specimens of polyethylene and the commercial polymer. From these tests it was established that for a molding cycle in which the plunger is kept forward until the mold is opened and "steady-state" cycle conditions have been established, the tensile modulus and tensile strength at yield increase as injection pressure and/or temperature are decreased; the opposite was true for the same properties measured in compression. Finally, polyethylene was compounded with additives to improve its mechanical properties.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1975.E33.pdf 60.86 Mb 04:41:44 02:24:53 02:06:47 01:03:23 00:05:24
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.