Title page for ETD etd-03092000-16000052

Type of Document Master's Thesis
Author Ong, Chin Guan
Author's Email Address chin_guan@hotmail.com
URN etd-03092000-16000052
Title Shaking and Balance of a Convertible One- and Two-Cylinder Reciprocating Compressor
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Mitchiner, Reginald G. Committee Chair
Kirk, R. Gordon Committee Member
Reinholtz, Charles F. Committee Member
  • shaking
  • impact force
  • slider-crank mechanism
  • Reciprocating compressor
  • acceleration
  • optimization
Date of Defense 2000-03-03
Availability unrestricted
This research involves the study of a one- and two-cylinder convertible reciprocating Freon compressor for air conditioning or refrigeration purposes. The main concern is the reduction of the vibration (noise) caused during the operation of the compressor. Vibration is a main concern when the compressor is shifted from the one-cylinder operation to the two-cylinder operation mode and the reverse of this shift.

The objectives for this research are (1) to investigate the shaking force due to the reciprocating mass at high frequencies, which are up to 4600 Hz (80w) in this research; (2) to determine the dominant force for compressor vibration among the three possible sources of shaking force due to reciprocating mass, impact forces due to clearance at the connecting rod - piston joint, and the z-axis force from the motor torque due to the rotor's conductor rods being skewed at an angle; (3) to minimize the difference in change of kinetic energies when switching between the one- and two-cylinder operating modes of the compressor.

The properties of the vibration in one- and two-cylinder operation have been studied and results have been analyzed in terms of kinetic energies generated in different setting of operation of the compressor. Dynamic simulation for the impact force is computed using SIMULINK. The Z-axis force due to the motor is computed. Results indicated that shaking force due to the reciprocating mass is the dominant force for only the first two harmonics (w, 2w). An optimization routine based on Hooke and Jeeves pattern search method is developed and an optimized setting of angle, force, and torque for balancing of the crankshaft to achieve objective (3) is determined.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Master_thesis.pdf 580.57 Kb 00:02:41 00:01:22 00:01:12 00:00:36 00:00:03

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.