Title page for ETD etd-03122009-041754

Type of Document Master's Thesis
Author Haque, Ashim Shatil
URN etd-03122009-041754
Title Optimization of surface preparation technique for unipolar silicon direct bonding
Degree Master of Science
Department Electrical Engineering
Advisory Committee
Advisor Name Title
Moore, Daniel J. Committee Chair
Desu, Seshu B. Committee Member
Elshabini-Riad, Aicha A. Committee Member
  • Silicon
Date of Defense 1993-12-05
Availability restricted

A special wafer bonding method called the Silicon Direct Bonding technique is used to study the bonding of unipolar (n-type, <100> oriented) silicon wafers. The primary objective of this thesis project is to find an optimum surface preparation technique for subsequent silicon wafer bonding. Wafer cleaning and treatment methods are investigated to understand the correlation between a high quality wafer surface and the resulting high quality electrical conduction at the interface. Accordingly, in this project, a preference for hydrophobic (less polar Si-OH surface) wafers is given to ensure a minimized amount of oxide layer on the surface. Several key factors that govern the quality of the wafer surfaces, such as the degree of hydrophobicity, HF etching time, composition of HF etching solution and Dr water rinse, are examined with ellipsometric and XPS measurements. An HF etching followed by a sputter etching has been selected to pre-treat the wafer surfaces for bonding. A maximum allowable air exposure time (35 second) is also found which would allow bonding without significant re-growth of the oxide layer. Bonding is performed under vacuum with a special mechanical fixture and the resulting structures from a subsequent heat treatment process are examined with crack propagation testing. Bond strength after annealing is sufficient to withstand a pull test, however, with a 3 point bend testing, the crack propagated horizontally at the interface.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1993.H372.pdf 2.67 Mb 00:12:21 00:06:21 00:05:33 00:02:46 00:00:14
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.