Title page for ETD etd-03142006-103413

Type of Document Master's Thesis
Author Bausano, John Vincent
Author's Email Address jbausano@vt.edu
URN etd-03142006-103413
Title Structural Integrity of Polymer Matrix Composites Exposed to Fire Conditions
Degree Master of Science
Department Engineering Mechanics
Advisory Committee
Advisor Name Title
Lesko, John J. Committee Chair
Case, Scott W. Committee Member
Riffle, Judy S. Committee Member
  • fire
  • composite
Date of Defense 2003-01-03
Availability unrestricted
Polymer matrix composites (PMC’s) perform well under many loading conditions and situations. Exposure of PMC’s to fire is a concern due to their inherent material degradation at elevated temperatures. The elevated temperature response of PMC’s to combined thermal and mechanical loads are especially of concern.

PMC thermal and mechanical properties undergo transformations at elevated temperatures. Some of these effects are reversible if the maximum temperatures are lower than approximately 200ºC. The stiffness is significantly reduced at elevated temperatures but if the applied temperature is under the thermal degradation temperature of the matrix, the stiffness should be recoverable upon cooling. Some effects like the endothermic decomposition of the matrix are not reversible effects.

This study focuses on reversible properties in the temperature range from room temperature to about 200ºC. Thermally these effects alter the thermal conductivity and specific heat. Reversible elastic effects considered are the off axis stiffness reductions as functions of temperatures.

Thermal profile predictions were conducted using a finite difference code that included convection and radiation effects on the front and back faces of the composite. These predictions were shown to be in good agreement with experimental data.

A modified classic laminate analysis (CLT) was implemented to predict the failure times of the composites under combined thermal and mechanical loading. The Budiansky-Fleck micro-buckling analysis technique was used as the failure function of the [0º] surface plies. A finite element analysis (FEA) analysis was also performed and showed good agreement with the experimental data.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  bausano.pdf 5.29 Mb 00:24:30 00:12:36 00:11:01 00:05:30 00:00:28

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.