Title page for ETD etd-03272007-171427

Type of Document Master's Thesis
Author Schellenberg, Daniel Leo
URN etd-03272007-171427
Title Nitrogen Management and Weed Suppression in Organic Transition
Degree Master of Science
Department Horticulture
Advisory Committee
Advisor Name Title
Welbaum, Gregory E. Committee Chair
Morse, Ronald D. Committee Member
Westwood, James H. Committee Member
  • non-chemical control
  • tillage
  • cover crops
  • Brassica olearcea var. italica
Date of Defense 2007-02-05
Availability unrestricted
The objectives of this research were: 1) to quantify the amount of supplemental nitrogen (N) to maximize organic broccoli (Brassica olearcea var. italica) on transition soils, 2) to evaluate the ability of leguminous cover crops lablab (Dolichos lablab L.), soybean (Glycine max L.), sunn hemp (Crotalria juncea L.) and a sunn hemp and cowpea mixture (Vigna sinensis Endl.) to supply N and suppress weeds and, 3) to compare the effect on N availability and broccoli yield potential of incorporating cover crops with conventional tillage (CT) or mulching cover crops with no-tillage (NT) practices. Broccoli was grown during the third year of organic transition in the spring and fall of 2006 at the Kentland Agricultural Research Farm in Blacksburg, VA. Supplemental N significantly increased broccoli yield up until 112 kg ha-1 with a quadratic correlation with leaf N. The NT treatment yielded no difference during the spring, but in the fall CT surpassed NT. On the other hand, N uptake, measured by leaf N, under NT conditions increased with supplemental N, which suggests NT has equivalent yield potential as CT when N is not limiting. Yields from leguminous residues did not differ, even though quality and quantity of cover crop biomass did. This suggests that N availability from cover crop legumes may be impacted other ecological process such as soil microbial activity. Also, cover crop residues differed in their ability to suppress weeds. The results from this study give organic growers in transition tools to maximize productivity and sustainability.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Thesis2.pdf 398.21 Kb 00:01:50 00:00:56 00:00:49 00:00:24 00:00:02

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.