Dynamic forcing of oxygen, iron, and manganese fluxes at the sediment-water interface in lakes and reservoirs

Lee Davis Bryant

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
In partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in
Civil Engineering

John C. Little, co-Advisor
Alfred Wüest, co-Advisor
Peter Berg
Matthew J. Eick
Daniel F. McGinnis
Peter J. Vikesland

March 23, 2010
Blacksburg, Virginia

Keywords: Sediment, water, turbulence, diffusive flux, iron, manganese, oxygenation
Copyright © 2010, Lee Davis Bryant
Dynamic forcing of oxygen, iron, and manganese fluxes at the sediment-water interface of lakes and reservoirs – Abstract

by Lee Davis Bryant

The National Research Council recently called for a more interdisciplinary approach to drinking water research to address the critical issue of global drinking water supplies. Hypolimnetic oxygenation systems (HOx) are being increasingly used to improve water quality in stratified reservoirs by increasing dissolved oxygen (O₂) concentrations and subsequently suppressing the release of soluble species such as iron (Fe) and manganese (Mn) from the sediment into the water. However, while the influence of HOx on the water column has been established, little work has been done on how oxygenation affects sediment O₂ uptake (i.e., sediment oxygen demand) and other sediment-water fluxes. In response to the growing need for alternative approaches for improving water quality, we conducted highly interdisciplinary research to evaluate how O₂, Fe, and Mn cycling at the sediment-water interface is influenced by both natural and HOx-induced variations in water column dynamics, chemical redox processes, and microbial activity within the sediment, all of which may govern sediment-water fluxes. Studies were performed in an alpine lake in Switzerland and in an HOx-equipped drinking-water-supply reservoir in Virginia. This research was based on in situ field campaigns paired with laboratory experiments, microbial analyses, and computer simulation to elucidate variable sediment O₂ uptake and corresponding Fe and Mn cycling. This work is unique in that sediment-water fluxes were assessed using in situ data from both sides of the sediment-water interface.

Results show that sediment O₂ uptake flux is strongly controlled by both wind- and HOx-induced dynamic forcing. Our findings reveal that Fe and Mn fluxes were suppressed from the bulk hypolimnion via biogeochemical cycling in the oxic benthic region. Results also indicate that the sediment microbial community structure may directly respond to HOx-induced variation in sediment O₂ availability. Additionally, based on an analysis of the robustness of several commonly used methods for flux calculations, we show that flux estimates are not strongly dependent on the method chosen for analysis. Ultimately, by emphasizing the highly transient nature of sediment O₂ uptake, this research will aid in accurate characterization of various sediment-water fluxes and corresponding water quality. Our results will also directly contribute to the optimization of HOx operations and lake and reservoir management.
Acknowledgements

I am extremely grateful to my co-advisors John Little and Alfred Johny Wüest. Without their help, support, and friendship this would not have been possible. I am also very thankful for my committee members, Peter Berg, Matt Eick, Dan McGinnis, and Peter Vikesland, who have provided invaluable advice and encouragement.

I would like to express sincere appreciation to Kevin Elam, Vickie Singleton, Lindsay Olinde, Jeff Booth, and the entire staff at Spring Hollow and Carvins Cove Reservoir treatment plants for their assistance and patience both in the field and in the laboratory. I would like to thank Helmut Bürgmann for his guidance with microbial work. I am also very grateful to Julie Petruska, Claudia Lorrai, George Filz, Andreas Brand, and Helen Hsu-Kim for their support throughout my doctoral work. I especially want to thank Paul Gantzer and Liz Rumsey for their extensive help with equipment design and field work and for their friendship.

Finally, I am so very thankful to my family and friends for their endless supply of love, support, and encouragement.

Financial support for this project came from the U.S. Environmental Protection Agency (Science to Achieve Results (STAR) fellowship), the National Science Foundation (NSF Graduate Education and Research Traineeship (IGERT) fellowship), the U.S. Department of Education (Graduate Assistance in Areas of National Need (GAANN) fellowship), Virginia Tech Via Civil and Environmental Engineering Department (Via fellowship), and the Western Virginia Water Authority (WVWA).
Table of Contents

Abstract.. ii
Acknowledgements ... iii
List of Tables .. ix
List of Figures .. xi
Author’s preface and attributions .. xv

Chapter 1 – Executive summary on biogeochemical cycling of O₂, Fe, and Mn and drinking water quality... 1
 1.1 Introduction ... 1
 1.2 Research significance .. 2
 1.3 Scope and objectives .. 4
 1.4 Conclusions ... 5
 1.5 References .. 6

Chapter 2 – Variable sediment oxygen uptake in response to dynamic forcing........ 10
 2.1 Abstract ... 10
 2.2 Introduction ... 11
 2.3 Methods ... 13
 2.3.1 Study site and in situ instrumentation .. 13
 2.3.1.1 ADV velocity measurements ... 14
 2.3.1.2 ADP velocity measurements ... 14
 2.3.1.3 O₂ and temperature logger measurements .. 14
 2.3.1.4 Microsensor O₂ and temperature measurements across SWI 15
 2.3.2 O₂ uptake and DBL analyses ... 16
 2.3.3 Inertial dissipation analyses ... 19
 2.3.4 Friction velocity analyses ... 20
 2.4 Results .. 21
 2.4.1 Seiche dynamics ... 21
 2.4.2 Temperature and O₂ distribution .. 22
 2.4.3 O₂ flux and δ_{DBL} .. 23
 2.4.4 Sediment oxic zone .. 24
2.4.5 Profile dynamics ...24
2.5 Discussion ...25
 2.5.1 Forcing of O2 distribution ...25
 2.5.2 Variations in sediment O2 consumption26
 2.5.3 Scale of variation ..28
2.6 Conclusion ...29
2.7 Acknowledgements ...30
2.8 References ...31

Chapter 3 – Evaluating oxygen fluxes from both sides of the sediment-water interface ...48

 3.1 Abstract ...48
 3.2 Introduction ...49
 3.3 Materials and procedures ..51
 3.3.1 Study site and in-situ instrumentation51
 3.3.2 Turbulence analyses ..51
 3.3.3 Friction velocity analyses ...52
 3.3.4 Methods for J\textsubscript{O2} analyses52
 3.3.4.1 Direct method ..54
 3.3.4.2 \textit{u*} method ..54
 3.3.4.3 Curvefit method ..55
 3.3.4.4 Zonefit method ...55
 3.3.4.5 Model method ...56
 3.4 Assessment ...57
 3.4.1 Dynamic forcing of O2 distribution57
 3.4.2 Comparison of results ..58
 3.4.3 Evaluation of each method ..59
 3.4.3.1 Direct method ..59
 3.4.3.2 \textit{u*} method ..60
 3.4.3.3 Curvefit method ..61
 3.4.3.4 Zonefit method ...62
 3.4.3.5 Model method ...63
3.5 Discussion..63
3.5.1 Water-side versus sediment-side..63
3.5.2 Sediment O₂ consumption..67
3.6 Comments and recommendations..68
3.7 Acknowledgements...70
3.8 References ...70

Chapter 4 – Oxygenation-induced variation in sediment oxygen uptake.........84

4.1 Abstract..84
4.2 Introduction ...85
4.3 Materials and methods...87
4.3.1 Study site..87
4.3.2 Data collection and analysis...88
 4.3.2.1 O₂ microprofiles...88
 4.3.2.2 Current velocity ...89
 4.3.2.3 O₂ microprofile analyses...90
 4.3.2.3 Turbulence estimations..91
4.4 Results and discussion...93
 4.4.1 Vertical O₂ distribution at SWI...93
 4.4.2 HOx flow and current velocity ...95
 4.4.3 HOx-induced variation in sediment O₂ uptake96
 4.4.4 J₀₂ as a function of flow rate...97
 4.4.5 Effect of HOx on sediment O₂ availability...98
 4.4.6 Influence of HOx proximity...100
 4.4.7 Effect on source water quality ..102
4.5 Conclusions ...103
4.6 Acknowledgements ...104
4.7 References ...104

Chapter 5 – Biogeochemical cycling of iron and manganese at the sediment-water interface in response to hypolimnetic oxygenation.................................121

5.1 Abstract...121
5.2 Introduction ...122
5.3 Materials and methods ... 123
 5.3.1 Study site and instrumentation .. 123
 5.3.1.1 O₂ profiles at the SWI ... 124
 5.3.1.2 Fe and Mn profiles at the SWI ... 126
 5.3.1.3 Water sample measurements ... 127
 5.3.1.4 Bulk sediment measurements ... 127
 5.3.2 Flux analyses ... 127
5.4 Results and discussion ... 129
 5.4.1 Sediment-water vertical Fe and Mn distribution 129
 5.4.2 Fe and Mn response near the SWI .. 129
 5.4.3 HOx-induced variation in J_O₂, J_Fe, and J_Mn 131
 5.4.4 Amount of J_O₂ allocated to J_Fe and J_Mn suppression 133
 5.4.5 Biogeochemical cycling effects .. 134
 5.4.6 Influence of HOx on bulk sediment .. 135
 5.4.7 Effect of J_Fe and J_Mn on water column 137
5.5 Conclusions ... 139
5.6 Acknowledgements .. 140
5.7 References .. 140

Chapter 6 – Variations in sediment microbial community structure in response to hypolimnetic oxygenation ... 159

 6.1 Abstract .. 159
 6.2 Introduction .. 160
 6.3 Materials and procedures .. 161
 6.3.1 Study site and instrumentation ... 161
 6.3.2 Analytical methods ... 161
 6.3.2.1 Nucleic acid extraction from CCR sediment 162
 6.3.2.2 DNA quantification with PicoGreen 162
 6.3.2.3 Nucleic acid amplification via PCR 162
 6.3.2.4 Community composition via RISA 163
 6.3.2.5 Correlation to CCR geochemical data 163
 6.3.2.6 Identification of Mn-oxidizers via LBB 164
6.4 Results and discussion..164
 6.4.1 Relative concentrations of DNA...164
 6.4.2 Phylogenetic hierarchy ...165
 6.4.3 Correlation between microbial community structure, geochemical cycling,
 and HOx operation ...165
 6.4.4 Presence of metal-oxidizers and reducers ..167
 6.5 Conclusions ..168
 6.6 Acknowledgements ..169
 6.7 References ..170

Chapter 7 – Global impacts and future work ..182
 7.1 Global impacts ...182
 7.2 Future work ..183
 7.3 References ..184

Appendix A – Supporting data for Chapter 4...185
Appendix B – Supporting data for Chapter 5...188
Appendix C – Microbial method procedures ...192
 C.1 Nucleic acid extraction ..193
 C.2 DNA quantification with PicoGreen ..196
 C.3 PCR program ..197

Appendix D – Copyright permission ...199
List of Tables

Chapter 2

Table 2.1 Acronyms and notations with corresponding units used for this study36
Table 2.2 Mean estimates of friction velocity (u_*), energy dissipation rate (ε), and intermittency (σ_{int}) of ε37
Table 2.3 Results of the five analytical methods used for sediment O$_2$ uptake rate (J_{O_2}) and diffusive boundary layer thickness (δ_{DBL}) calculations............................38
Table 2.4 Average J_{O_2} and vertically-integrated areal rates of change in the O$_2$ concentration over time ($\partial C/\partial t_a$), areal sediment O$_2$ consumption rates (R_{O_2a}), and mass of O$_2$ (M_{O_2}) in the sediment ..39

Chapter 3

Table 3.1 Frequently-used acronyms and notations ..76
Table 3.2 Average sediment oxygen uptake rate (J_{O_2}), average diffusive boundary layer thickness (δ_{DBL}), and corresponding distributions of results (\pm as compared with averages) based on estimates from all five methods, water-side (direct and u_*) and sediment-side (curvefit, zonefit, and model) approaches ..77

Chapter 4

Table 4.1 Average results for sediment oxygen uptake rate (J_{O_2}), dissolved oxygen (O$_2$) at the sediment-water interface (C_{SW1}), and sediment oxic zone depth (z_{max}) used for correlations between hypolimnetic oxygenation system (HOx) flow rate and J_{O_2} (Fig. 4.8) and z_{max} (Fig. 4.10) ..109
Table 4.2 Spatial variation in average J_{O_2} and areal sediment O$_2$ consumption rate (R_{O_2a}) during summer 2008 ...110

Chapter 5

Table 5.1 Estimation of proportion of measured sediment O$_2$ uptake rate (J_{O_2}; based on microprofile data) utilized for oxidation of iron (Fe) and manganese (Mn) fluxes (J_{Fe} and J_{Mn}; based on peeper data) ...146

Chapter 6

Table 6.1 Sediment sampling strategy and nomenclature used in microbial analytical techniques ..173
Appendix B

Table B.1 Comparison of sediment core and in situ MP4 microprofiler data from summer 2007

189
List of Figures

Chapter 2

Figure 2.1 The key components of a dissolved oxygen (O2) profile are defined, illustrating the relationship between seiching, turbulent mixing, and the vertical distribution of O2 on both sides of the sediment-water interface (SWI; modified from Jørgensen and Revsbech 1985) ..40

Figure 2.2 (a) The measured longitudinal velocity spectrum \(\phi_{11} \) (with \(k^{-5/3} \) slope characteristic in the inertial subrange) is multiplied by \(k^{5/3} \) to be independent of wavenumber \(k \). The constant value of \(\phi_{11} \times k^{5/3} \), indicated by the horizontal bar, is used to calculate the mean energy dissipation (\(\varepsilon \)). (b) Dissipation rates (\(\varepsilon \)) calculated by inertial dissipation method using longitudinal, planar, and vertical velocity data as measured via acoustic Doppler velocimeter (ADV) ..41

Figure 2.3 (a) Seiche cycle in Lake Alpnach and location of experiment site during 27 – 28 Aug 07 campaign. (b) East and north velocity components at 10 cm above the sediment as measured by the ADV ..42

Figure 2.4 Temperature and O2 data obtained on 27 – 28 Aug 07 ..43

Figure 2.5 O2 microprofiles obtained at approximately 50-min intervals relative to the ADV velocity time series ...44

Figure 2.6 Correlation between \(\varepsilon \) and sediment O2 uptake rate (\(J_{O2} \)) ...45

Figure 2.7 Time series of current velocity, turbulence (as defined by \(\varepsilon \)), and \(\delta_{DBL} \) showing close correlation between all three parameters with only a slight phase lag (on the order of minutes) between velocity and \(\varepsilon \) ..46

Figure 2.8 PROFILE model results defining zones of varying volumetric sediment O2 consumption rates (\(R_{O2v} \)) for periods of active and inactive turbulence as characterized by \(\varepsilon \) in (a) ..47

Chapter 3

Figure 3.1 Components of a dissolved oxygen (O2) profile (a) and the five analytical methods (b-f) used to estimate sediment O2 uptake rate (\(J_{O2} \)) and diffusive boundary layer thickness (\(\delta_{DBL} \)) are detailed using a sample O2 profile (profile 14, obtained at 08:16 h on 28 Aug 07) ..78

Figure 3.2 (a) Time series of \(J_{O2} \), energy dissipation (\(\varepsilon \)), and friction velocity (\(u^* \)) as a function of O2 profile number. (b) Turbulence-induced variations in the vertical O2 distribution (as characterized by \(\delta_{DBL} \) and \(z_{max} \)) on both sides of the SWI ...80
Figure 3.3 Comparison of analytical method results for (a) J_{O_2} and (b) δ_{DBL} for all 14 profiles ...81

Figure 3.4 The universal scaling law (Fig. 3.1c) could be fit with the u^* method to a majority of our O_2 profiles, e.g., profile 3 in (a) ...82

Figure 3.5 Relationship between O_2 Batchelor length scale (L_B) and δ_{DBL}82

Figure 3.6 R_{O2v} as predicted by the zonefit method (PROFILE; based on zero-order kinetics; green) and the model method (AQUASIM; based on Monod kinetics; red)........83

Chapter 4

Figure 4.1 Map of Carvin’s Cove Reservoir (CCR) showing sampling sites (near-field locations CC and CVCB; central, mid-reservoir locations CE, C1, C2, and C3; back-reservoir location CR) and linear bubble-plume hypolimnetic oxygenation system (HOx) 111

Figure 4.2 Variations in oxygen flow during CCR HOx operations in 2007 and 2008 .112

Figure 4.3 Summary of in situ dissolved oxygen (O_2) profile data obtained at the sediment-water interface (SWI) with the MP4 microprofiler during the August 2008 campaign at C3 ..113

Figure 4.4 Contour plots of O_2 levels at the SWI (a; MP4 O_2 microsensor data), in the water overlying the sediment (b; MP4 O_2 microsensor data), and in the hypolimnion (c; CTD (conductivity-temperature-O_2 as a function of depth) profile data)..............................114

Figure 4.5 Variations in O_2 levels at the SWI (C_{SWI}), at 5 cm above the SWI (C_5), and within the sediment (as characterized by sediment oxic zone depth z_{max}) in response to turning off the HOx ..115

Figure 4.6 Current velocity time series (as measured via acoustic Doppler current profiler; ADCP) in relation to HOx flow during the August 2008 C3 campaign116

Figure 4.7 The response of J_{O2} and the vertical O_2 distribution at the SWI (a; as characterized by diffusive boundary layer thickness (δ_{DBL}) and z_{max}) to turning off the HOx corresponds directly to variations in near-sediment mixing (b) as characterized by current velocity (obtained via ADCP) and turbulence (defined by energy dissipation rate ϵ, which was estimated as a function of water-side δ_{DBL})..117

Figure 4.8 Variation in J_{O2} as a function of HOx flow rate ..118

Figure 4.9 Correlation between J_{O2} and both C_{SWI} (a) and C_5 (b)119

Figure 4.10 Variation in z_{max} as a function of HOx flow rate.....................................120
Chapter 5

Figure 5.1 Map of Carvin’s Cove Reservoir (CCR) showing locations of the seven sampling sites (CC, CVCB, CE, C1, C2, C3, and CR) and the hypolimnetic oxygenation system (HOx) .. 147

Figure 5.2 Profiles of soluble iron (Fe) and manganese (Mn) at the sediment-water interface (SWI) were obtained using in situ porewater analyzers (peepers) 148

Figure 5.3 Contour plots based on peeper data obtained near the HOx at site CC in 2006 (a and d) and at site CVCB in 2007 (b and e) and 2008 (c and f) 149

Figure 5.4 Total and soluble Fe and Mn data obtained from near-sediment core water samples collected throughout 2006 HOx operations .. 150

Figure 5.5 Correlation between near-sediment Fe and Mn levels (as characterized by sediment core water sample data), HOx flow, and dissolved oxygen (O2) levels at the SWI (as characterized by MP4 microprofile data) during the August 2008 campaign at C3 ... 151

Figure 5.6 Time series of sediment O2 uptake rate (JO2), diffusive fluxes of soluble Fe and Mn (JFe and JMn, respectively) at the SWI, and HOx flow rate both near the HOx (a; site CVCB) and mid-reservoir (b; site C3) ... 152

Figure 5.7 Evaluation of the proportion of measured JO2 utilized for oxidation of reduced Fe and Mn (based solely on diffusive fluxes JFe and JMn; the additional influence of microbial and surface-mediated processes were not taken into account) ... 153

Figure 5.8 Correlation between JMn, HOx flow, and Mn concentrations directly at the SWI, 1 m above the sediment (benthic region), and 4 m above the sediment (mid-hypolimnion) .. 154

Figure 5.9 The effect of near-sediment biogeochemical cycling was evaluated using a mass balance based on JMn (a), JFe (b), and average volume of the benthic region (1m depth) and the average hypolimnion (7m depth) .. 155

Figure 5.10 Bulk sediment total Fe and Mn data, soluble Fe and Mn concentrations at the SWI (peeper data), and corresponding sediment O2 conditions as characterized by depth of the sediment oxic zone (zmax) and O2 concentration 5 cm above and directly at the SWI (microprofile data) .. 156

Figure 5.11 Time series of total organic carbon (TOC), total Fe, and total Mn in bulk sediment characterizing the near field region from before CCR HOx operations began in 2005 through 2008 (no data collected in 2007) .. 157

Figure 5.12 The influence of fall turnover as compared to HOx on total and soluble Fe and Mn concentrations in the lower hypolimnion and average hypolimnetic O2 158
Chapter 6
Figure 6.1 Map of Carvin’s Cove Reservoir (CCR) showing sampling sites for microbial analyses (near field locations CC and CVCB; central, mid-reservoir locations C1, C2, C3, and CE; back-reservoir location CR) and linear bubble-plume hypolimnetic oxygenation system (HOx) ...174
Figure 6.2 Oxygen flow rates of the CCR HOx and dates of sediment core sampling ...175
Figure 6.3 Gel image of ribosomal intergenic spacer analysis (RISA) of rRNA isolated from CCR sediment showing variable banding patterns indicating different sediment bacteria phylotypes ..176
Figure 6.4 Nucleic-acid-concentration data obtained via PicoGreen analyses ...177
Figure 6.5 Average linkage hierarchical cluster analysis of community similarity (Raup-Crick distances) of CCR sediment samples based on presence-absence data of RISA phylotypes ..178
Figure 6.6 Biplots of ordination analysis of the RISA community dataset and environmental variables ..179
Figure 6.7 Constrained CCA ordination including all environmental (geochemical) variables ...180
Figure 6.8 Constrained CCA ordination specifically for site CC which includes soluble Fe and Mn data obtained via in situ porewater analyzer (peeper) ..181

Appendix A
Figure A.1 Correlation between diffusive boundary layer thickness (\(\delta_{DBL}\)) estimates obtained using in situ water-side (\(\delta_{DBL-W}\)) and sediment-side (\(\delta_{DBL-S}\)) oxygen (O2) microprofile data ..186
Figure A.2 Comparison of near-sediment current velocity and wind speed time series 186
Figure A.3 Correlation between \(J_{O2}\) and water-side \(\delta_{DBL}\) based on in situ MP4 data from 2007-2008 ...187

Appendix B
Figure B.2 Contour plots based on peeper data obtained mid-reservoir (site C3) and corresponding HOx flow pattern during 2007 and 2008 ..190
Figure B.3 Total and soluble Fe and Mn data obtained from near-sediment core water samples collected throughout 2008 HOx operations ..191
Author’s preface and attributions

This dissertation is a compilation of five manuscripts included as separate chapters spanning multiple disciplines. Primary fields of applications include aquatic science research, sediment-water flux analysis, and lake and reservoir management. Each manuscript is intended to stand alone and includes a comprehensive introduction and review of the scientific literature specific to the manuscript topic. Co-authors, acknowledgements, and an abstract summarizing results are provided for each manuscript chapter.

All five of the manuscripts presented as chapters in this dissertation are intended for publication. Chapter 2 has been published as a scientific article in *Limnology & Oceanography*. Chapter 3 was recently submitted for publication as a companion methods evaluation in *Limnology & Oceanography: Methods*. Chapters 4 and 5 are currently in preparation for submission to *Water Research*. Additional microbial analyses supporting Chapter 6 will be performed as part of the author’s post-doctoral work to finalize this manuscript for publication.

Chapters 4 and 5, which characterize the influence of hypolimnetic oxygenation on sediment-water fluxes and corresponding water quality, are companion papers to studies performed by Gantzer et al. (2009a,b) that focused specifically on the water column. Overall effects of oxygenation on source water quality are hence evaluated in Chapters 4 and 5 predominantly from a sediment-side perspective and by Gantzer et al. (2009a,b) from a water-side perspective. Furthermore, Chapters 4 and 5 are intended to serve as scientific and conceptual studies of oxygenation-induced variation in physical and chemical controls on sediment-water fluxes while the companion works by Gantzer et al. are meant to provide a more applied perspective to oxygenation operations. These combined studies will hopefully contribute significantly to lake and reservoir management and optimization of oxygenation systems for improved water quality and aquatic ecosystem health.

Attributions

Several colleagues contributed to the research presented in this dissertation. A brief description of their background and their contributions are included here. Ms. Lee Bryant (doctoral candidate) and Dr. John Little (Professor, Civil & Environmental Engineering Dept.,
Virginia Tech; co-Advisor and Committee co-Chair) contributed to every chapter and therefore their specific contributions will not be discussed in detail.

Chapters 2 and 3: Dr. Alfred Wüst (Professor and Group Leader of Aquatic Physics, Surface Waters Dept., Swiss Federal Institute for Aquatic Science and Technology (Eawag), co-Advisor and Committee co-Chair) helped develop the research intellectually, provided insight on data analysis, and reviewed the manuscripts extensively before submission. Ms. Claudia Lorrai (doctoral candidate, Surface Waters Dept., Eawag) performed turbulence analyses, provided guidance on turbulence interpretation, and assisted with figures. Dr. Daniel McGinnis (Research scientist, Marine Biogeochemistry Dept., IFM-GEOMAR Liebniz Institute of Marine Sciences) also assisted in turbulence interpretation and with figures. Dr. Andreas Brand (Post-doctoral scientist, Civil & Environmental Engineering Dept., University of California, Berkeley) developed and provided guidance on the AQUASIM numerical model used in these chapters. Ms. Lorrai and Drs. McGinnis and Brand also reviewed the manuscripts prior to submission. Dr. Peter Berg (Professor, Dept. of Environmental Science, University of Virginia) developed and provided guidance on the PROFILE numerical model used in this research.

Chapters 4 and 5: Dr. Paul Gantzer (Gantzer Water Resources LLC) obtained water column data and performed supporting analyses. The Western Virginia Water Authority staff at Spring Hollow Treatment plant performed laboratory analyses for water and sediment samples.

Chapter 6: Dr. Helmut Bürgmann (Professor and Group Leader of Microbial Ecology, Surface Waters Dept., Eawag) contributed by providing instruction on microbial analytical methods, statistically analyzing data, and reviewing the document. Ms. Mary-Theresa Pendergast performed Leukoberbelin Blue (LBB) analyses and assisted in evaluating LBB results.

References
Chapter 1 – Executive summary on biogeochemical cycling of O_2, Fe, and Mn and drinking water quality

1.1 Introduction

In response to the growing water crisis, the National Research Council (NRC) recently called for a more interdisciplinary approach to drinking water research. As the limitations of discipline-specific perspectives have become apparent in light of the pending water crisis, scientists and utilities have come to realize that truly successful solutions cannot be adequately addressed within the traditional confines of solitary disciplines but must be based on novel approaches and collaborations that merge physical, chemical, biological, and social science boundaries (NRC 2004). Alternative approaches for improving water quality are being explored to address the critical issue of global drinking water supplies. Our research largely focused on improving water quality via hypolimnetic oxygenation systems (HOx) which are being increasingly used in stratified reservoirs to elevate dissolved oxygen (O_2) concentrations in the hypolimnion (bottom water) and thereby suppress the release of manganese (Mn), iron (Fe), and other soluble metals from the sediment (Beutel 2003; Gantzer et al. 2009a,b). Mn and Fe enter lakes, groundwater, and other water bodies as a result of O_2 depletion, which leads to reductive dissolution of metal-oxides in the sediment and a flux of reduced, soluble metals into the water. Release of metals from the sediment to the water column is one of the most common natural sources of increased metal concentrations in reservoirs, particularly during periods of hypolimnetic hypoxia.

Mn specifically is becoming a serious problem for water treatment on a global scale (Kohl and Medlar 2006). Although Mn is regulated in drinking water for aesthetic reasons (odor, taste, color), neurological health risks associated with excess Mn in drinking water are now emerging for populations in the U.S. and around the world (Wasserman et al. 2006; Buschmann et al. 2007; Hafeman et al. 2007; Walker et al. 2007). Wasserman et al. (2006) found that children in Bangladesh who had been exposed to drinking water with Mn levels > 3 mg L$^{-1}$ had lower IQ scores than children not exposed to increased levels of Mn. Taking into consideration these neurotoxic concerns and the fact that approximately 6% of U.S. household wells have been found to have Mn levels exceeding the EPA lifetime health advisory limit for
Mn in drinking water (0.3 mg L\(^{-1}\)), there is a strong possibility that some U.S. children may also be at risk for Mn-induced neurotoxicity (Walker et al. 2007). Additionally, treatment of source water with elevated Mn concentrations can be difficult and expensive due to the complexity of Mn redox kinetics (Balzer 1982; Nealson 1997). Although the removal of metals from source water during water treatment is feasible, the process is not always effective and requires the use of chemical oxidants that can react with naturally occurring organic matter to form carcinogenic compounds, thus posing serious health risks (Budd et al. 2007; Brandhuber and Clark 2008; Nattress 2008).

An HOx was installed in Carvins Cove Reservoir, one of the primary drinking water supply reservoirs for Roanoke, Virginia, in 2005 as a source-water management strategy to address Fe and Mn issues resulting from hypolimnetic hypoxia. Since installation of the Carvins Cove HOx, experiments have been performed to characterize the influence of HOx operations on source water quality, sediment O\(_2\) uptake, and soluble Fe and Mn fluxes at the sediment-water interface (SWI). An unusually holistic approach to drinking water treatment is used in this project that focuses on improving the quality of the source water prior to the treatment process. By improving the source water, the overall conditions of the aquatic ecosystem (e.g., trophic state, fish health, aquatic biodiversity, and reservoir appearance) are enhanced while drinking water quality is improved by increasing O\(_2\) and reducing metal concentrations entering the treatment plant. Although an engineering approach is typically used in designing and managing HOx, many of the factors controlling the success of source water oxygenation are in fact deeply rooted in limnology, sediment science, chemistry, aquatic physics, and microbiology. Our novel interdisciplinary research thus emphasizes the complex interactions between physical, chemical, and biological processes governing sediment-water fluxes and subsequent water quality.

1.2 Research significance

The condition of water supplies in many regions of the world, including the U.S., is deteriorating and water may soon prove to be the most critical natural resource governing human and ecosystem health (Gleick 2003; NRC 2004; Lodge 2010). It has been established that oxygenation of surface waters can effectively improve water quality and reduce treatment costs (Geney 1988; Geney 1992; van der Tak et al. 1992; Beutel et al. 2007). However, HOx are
currently a relatively underused drinking water treatment method. This may be due to the fact that while the mechanisms of O$_2$ addition have been studied in great detail (McGinnis et al. 2004; Singleton and Little 2006; Gantzer et al. 2009a), the impacts of HOx on sediment O$_2$ uptake and soluble metal release have not been comprehensively evaluated.

Sediment O$_2$ uptake is a function of both physical limitations on O$_2$ transfer to the sediment and sediment O$_2$ consumption processes (e.g., benthic mineralization and re-oxidation of reduced species; Jørgensen and Boudreau 2001). Resolving the vertical distribution of O$_2$ at the SWI allows for quantification of the sediment O$_2$ uptake rate (J_{O2}), which is a fundamental parameter for the characterization of O$_2$ dynamics in aquatic systems (Wetzel 2001). Consequently, considerable effort has been devoted to elucidating the water-side and sediment-side factors controlling sediment O$_2$ uptake in freshwater and marine systems (Bouldin 1968; Jørgensen and Revsbech 1985; Boudreau 2001). Turbulence and O$_2$ levels in the lower hypolimnion have been shown to have a direct effect on O$_2$ transport to the sediment and subsequent O$_2$ consumption processes within the sediment (Lorke et al. 2003; Brand et al. 2009). However, recent work by Glud et al. (2009) has also shown that the vertical distribution of O$_2$ at the SWI and corresponding sediment O$_2$ consumption processes are much more dynamic than previously thought. Variable near-sediment turbulence and O$_2$ conditions (e.g., due to internal currents forced naturally by wind or mechanically by HOx) may have significant influence on sediment-water fluxes. Thus, while HOx are designed to suppress the release of reduced species from the sediment by elevating hypolimnetic O$_2$, increased levels of near-sediment O$_2$ and turbulence could theoretically enhance sediment-water fluxes. Correspondingly, the failure of HOx to sufficiently oxygenate the bulk water in several reservoirs has been attributed to induced sediment O$_2$ uptake (Beutel 2003).

Therefore, we performed research based primarily on in situ measurements to investigate critical and often highly variable processes governing sediment O$_2$ uptake and Fe and Mn cycling at the SWI, with particular focus on the influence of wind- and HOx-induced changes in dynamic forcing. While it has been established by previous work that sediment-water fluxes are frequently controlled by physical transport limitations (e.g., diffusive boundary layer; Lorke et al. 2003), these studies have largely been theoretical or laboratory based (Mackenthun and Stefan 1998; Higashino et al. 2004; O’Connor and Hondzo 2008). To our knowledge, this is one of the first studies based on in situ data to assess how the vertical O$_2$ distribution at the SWI, sediment,
O₂ uptake, and soluble metal fluxes vary in response to changes in near-sediment turbulence and O₂ levels. Additionally, while sediment-water fluxes are acknowledged to be influenced by both hydrodynamics and biogeochemical uptake processes within the sediment, these fluxes are almost always analyzed from either a water- or sediment-side perspective. This research expands on previous work by comparing water-side (hydrodynamics and resulting diffusive boundary layer thickness) and sediment-side (O₂ consumption and resulting sediment oxic zone) approaches for evaluating sediment-water flux.

1.3 Scope and objectives

This doctoral research specifically investigated how O₂, Fe, and Mn cycling at the SWI and corresponding water quality is influenced by variable water column dynamics, chemical redox processes, and microbial activity within the sediment. This work is unique in that it quantified processes controlling biogeochemical cycling on both sides of the SWI based on in situ sediment and water data. We used a research strategy that combined in situ field campaigns with laboratory experiments, microbial analyses, and computer simulation to elucidate sediment O₂ uptake and Fe and Mn cycling as a function of O₂ availability and turbulence.

Research investigating the effect of wind-induced (i.e., seiche) turbulence on sediment O₂ uptake was based on data obtained in Lake Alpnach, Switzerland. Lake Alpnach is characterized by steep O₂ gradients at the SWI due to relatively high J₀₂ and by basin-scale movements caused by daily alpine winds; thus, this was an ideal location for our research on natural dynamic forcing. Work focused on the influence of HOx on sediment-water fluxes used an innovative approach that employed a Virginia drinking-water-supply reservoir oxygenation system as an experimental tool to artificially control redox conditions within an otherwise entirely natural aquatic ecosystem. These field-scale facilities provided an opportunity to perform a real-world study of the interplay between sediment O₂ uptake, Fe and Mn biotransformation, and diffusive transport at the ecosystem level.

Specific objectives of this research were to:

(1) Determine how seiche-induced turbulence affects sediment O₂ uptake rate (J₀₂) on a very rapid (sub-hourly) time scale in an alpine freshwater lake (Chapter 2);
(2) Evaluate five common analytical methods used to estimate O$_2$ flux from both sides of the sediment-water interface (Chapter 3);

(3) Quantify J$_{O2}$ and sediment O$_2$ availability as a function of HOx operations in a drinking-water-supply reservoir (Chapter 4);

(4) Identify how hypolimnetic oxygenation affects sediment-water fluxes of Fe and Mn, with particular focus on water-quality implications (Chapter 5);

(5) Characterize how sediment microbial populations change as a function of HOx-induced variations in sediment O$_2$ availability (Chapter 6).

1.4 Conclusions

Results from this interdisciplinary research provide important scientific, methodological, and practical contributions to a range of disciplines, with primary fields of application including aquatic science research, sediment-water flux analysis, and lake and reservoir management. Our evaluation of natural, wind-forced variation in turbulence revealed that J$_{O2}$ and corresponding O$_2$ availability in the sediment is strongly controlled by dynamic forcing (Chapter 2). Results of this research highlight the importance of using multiple measurements to resolve average conditions at the SWI. Currently, single measurements evaluating J$_{O2}$ under conditions assumed constant are sometimes extrapolated to characterize an aquatic system, thereby ignoring the influence of intermittent hydrodynamic processes (Veenstra and Nolen 1991; Beutel 2003). Additionally, we show that while flux estimates are not strongly dependent on the method chosen for analysis, there are benefits and limitations involved with evaluating data from both the water- and sediment-side of the SWI (Chapter 3).

We expanded on these results via practical application in a local HOx-equipped drinking-water supply reservoir managed by the Western Virginia Water Authority (WVWA). Results of our HOx studies (Chapters 4-5), to our knowledge the first of their kind performed in situ, revealed a strong correlation between HOx use and increased J$_{O2}$ which verifies previous theoretical and laboratory studies (Moore et al. 1996; Beutel 2003). Furthermore, our findings show that while oxygenation did facilitate Fe and Mn flux out of the sediment, these fluxes were
suppressed from the bulk hypolimnion via biogeochemical cycling in the oxic benthic region. Supporting microbial analyses indicated that the sediment microbial community structure may directly respond to HOx-induced variation in sediment O2 availability (Chapter 6). Ultimately, hypolimnetic Fe and Mn concentrations were significantly decreased by Carvins Cove HOx operations thereby supporting the viability of using oxygenation to control metal levels in source water (Chapters 4-5; Gantzer et al. 2009b).

By emphasizing the dynamic nature of sediment-water flux, our results will hopefully help shape future experiments in lakes and reservoirs. Results may also be used to improve operation of HOx installed around the world by providing mechanistic understanding of water-quality effects in relation to system operation. Specifically, HOx can be used to improve water quality on a broader scale by establishing the water-supply reservoir as the initial stage in the treatment process. HOx will become more important in the face of dwindling water supplies (e.g., in the western and southeastern U.S.) as water re-use and utilization of unconventional water supplies become more common.

1.5 References

Geney, R. S. 1988. Reservoir management for water quality improvement. AWWA Annual Conference, Orlando, FL, AWWA.

Chapter 2 – Variable sediment oxygen uptake in response to dynamic forcing

Bryant, Lee D., a Claudia Lorrai, b,c Daniel F. McGinnis, b,1 Andreas Brand, b,2 Alfred Wüst, b,c John C. Little a

aCivil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia.
bEawag (Swiss Federal Institute of Aquatic Science and Technology), Surface Waters – Research and Management, Kastanienbaum, Switzerland.
cInstitute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
Present addresses:
1IFM-GEOMAR, Leibniz Institute of Marine Sciences, RD2 Marine Biogeochemistry, Kiel, Germany.
2University of California, Berkeley.

Published in 2010 in *Limnology and Oceanography* 55:950-964. Used with kind permission from and copyrighted 2010 by the American Society of Limnology and Oceanography, Inc.

2.1 Abstract

Seiche-induced turbulence and the vertical distribution of dissolved oxygen above and within the sediment were analyzed to evaluate the sediment oxygen uptake rate (JO2), diffusive boundary layer thickness (δDBL), and sediment oxic zone depth (zmax) in situ. High temporal-resolution microprofiles across the sediment-water interface and current velocity data within the bottom boundary layer in a medium-sized mesotrophic lake were obtained during a 12-h field study. We resolved the dynamic forcing of a full 8-h seiche cycle and evaluated JO2 from both sides of the sediment-water interface. Turbulence (characterized by the energy dissipation rate, ε), the vertical distribution of dissolved oxygen across the sediment-water interface (characterized by δDBL and zmax), JO2, and the sediment oxygen consumption rate (RO2) are all strongly correlated in our freshwater system. Seiche-induced turbulence shifted from relatively active (ε = 1.2 × 10^-8 W kg^-1) to inactive (ε = 7.8 × 10^-12 W kg^-1). In response to this dynamic forcing, δDBL increased from 1.0 mm to the point of becoming undefined, zmax decreased from 2.2 to 0.3 mm as oxygen was depleted from the sediment, and JO2 decreased from 7.0 to 1.1 mmol m^-2 d^-1 over a time span of hours. JO2 and oxygen consumption were found to be almost equivalent (within ~5% and thus close to steady-state), with RO2 adjusting rapidly to changes in
Our results reveal the transient nature of sediment oxygen uptake and the importance of accurately characterizing turbulence when estimating \(J_{O2} \).

2.2 Introduction

Dissolved oxygen (\(O_2 \)) is one of the most critical ecological parameters affecting natural aquatic systems with benthic diversity, ecosystem health, and overall water quality all negatively influenced by depleted \(O_2 \) levels (Wetzel 2001; Stachowitsch et al. 2007). The amount of \(O_2 \) taken up by the sediment largely governs \(O_2 \) depletion in stratified waters with organic-rich sediment (Bouldin 1968; Veenstra and Nolen 1991). Sediment \(O_2 \) uptake is a function of both physical limitations on \(O_2 \) transfer to the sediment and sediment \(O_2 \) consumption processes (Jørgensen and Boudreau 2001). Resolving the vertical distribution of \(O_2 \) at the sediment-water interface (SWI) allows for the quantification of the sediment \(O_2 \) uptake flux (\(J_{O2} \)), which is a fundamental parameter for the characterization of \(O_2 \) dynamics in aquatic systems (Wetzel 2001). Consequently, considerable effort has been devoted to elucidating the water-side and sediment-side factors controlling sediment \(O_2 \) uptake in freshwater and marine systems (Bouldin 1968; Jørgensen and Revsbech 1985; Boudreau 2001).

Molecular diffusion typically becomes the controlling transport process for dissolved species (e.g., \(O_2 \)) at approximately 1 mm above the SWI in non-advective systems (e.g., cohesive freshwater and marine sediment; Jørgensen and Revsbech 1985; Røy et al. 2004). This mm-scale region immediately above the SWI is referred to as the diffusive boundary layer (DBL; Jørgensen and Revsbech 1985). Diffusion through the DBL is often the rate-limiting step restricting the supply of \(O_2 \) to the sediment in systems (e.g., lakes) where steep gradients occur at the SWI (Jørgensen and Revsbech 1985; Wüest and Lorke 2003). \(O_2 \) transport to the SWI is driven by the concentration gradient in the DBL and is therefore a function of the thickness of the DBL (\(\delta_{DBL} \)), which is controlled by turbulent mixing in the bottom boundary layer (BBL), and \(O_2 \) concentrations within the bulk BBL (\(C_{bulk} \)) and at the SWI (\(C_{SWI} \)), as depicted in Fig. 2.1. Upon reaching the sediment, \(O_2 \) is utilized for various biogeochemical processes (e.g., benthic organic matter mineralization and oxidation of reduced compounds) within the sediment oxic zone (quantified by depth \(z_{max} \); Fig. 2.1). A balance between the rate at which \(O_2 \) is supplied to the sediment, quantified by flux \(J_{O2} \) (\(\text{mmol m}^{-2} \text{ d}^{-1} \)), and the rate at which \(O_2 \) is consumed within
the sediment, quantified by the O₂ consumption rate \((R_{O₂}) \) which may be defined volumetrically \((R_{O₂v}; \text{mmol m}^{-3} \text{ d}^{-1}) \) or areally \((R_{O₂a}; \text{mmol m}^{-2} \text{ d}^{-1}) \), establishes the extent of the sediment oxic zone (Jørgensen and Boudreaux 2001; Higashino et al. 2004). It is important to note that \(R_{O₂} \) describes the utilization of available O₂ supplied to the sediment rather than the potential sediment O₂ demand (PSOD), which is often evaluated as a constant volumetric O₂ consumption rate. PSOD is a function of available electron acceptors in the sediment; while \(R_{O₂v} \) may approach PSOD in systems where \(R_{O₂v} \) controls O₂ diffusion at the SWI (e.g., marine sediment), PSOD would be much greater than \(R_{O₂v} \) in highly organic, transport-limited systems (e.g., lake sediment; Wüest and Lorke 2003). Furthermore, while \(R_{O₂v} \) may be strongly influenced by \(J_{O₂} \), PSOD is a relatively inherent property unaffected by short-term variations in O₂ availability.

Turbulence in the BBL (e.g., due to internal currents forced by wind or tide) has a direct effect on O₂ transport to the sediment and thus also influences O₂ consumption processes within the sediment. Significant insight has been gained from theoretical studies on how turbulence-induced variations in \(\delta_{DBL} \) affect O₂ uptake (Higashino et al. 2004, 2008), the relative contributions of O₂-consuming processes (Glud et al. 2007; Brand et al. 2009), and sediment microbial activity (Gantzer and Stefan 2003; Higashino and Stefan 2005). Rapid changes in \(\delta_{DBL} \) in response to dynamic forcing have been observed both in the laboratory (Mackenthun and Stefan 1998; Røy et al. 2004; O’Connor and Hondzo 2008) and in situ (Gundersen and Jørgensen 1990; Lorke et al. 2003). Glud et al. (2009) document that the vertical distribution of O₂ at the SWI of marine sediment can vary temporally (on the order of minutes to hours) by a factor > 3, which is within the range of seasonal variability for many aquatic systems. Results of these studies highlight the importance of using multiple measurements to resolve average conditions at the SWI. However, single measurements evaluating \(J_{O₂} \) under conditions assumed constant are sometimes extrapolated to characterize an aquatic system, thereby ignoring the influence of intermittent hydrodynamic processes (Veenstra and Nolen 1991; Beutel 2003).

Despite the established relationship between turbulence and the vertical O₂ distribution near the SWI, relatively few studies have incorporated simultaneous measurements of in situ current velocity and \(\delta_{DBL} \) into the assessment of \(J_{O₂} \). Previous work has focused predominantly on marine systems (Gundersen and Jørgensen 1990; Glud et al. 2007). Several freshwater experiments were performed to resolve turbulent O₂ transport within the BBL (Brand et al. 2008) and the effect of BBL dynamics on \(\delta_{DBL} \) (Lorke et al. 2003); however, these studies primarily
characterized turbulence. To our knowledge, no in situ work has been done that focuses on how J_{O_2}, δ_{DBL}, and the sediment oxic zone vary in response to rapid changes in velocity and direction of basin-scale (i.e., seiche) currents. Additionally, while sediment O_2 uptake may be influenced by both hydrodynamics and consumption processes within the sediment (Fig. 2.1), J_{O_2} is almost always interpreted exclusively from either a water- or sediment-side perspective (Higashino et al. 2004). We performed an in situ study that evaluated data from the water- and sediment-side of the SWI to determine how seiche-induced turbulence affects δ_{DBL}, the sediment oxic zone, and corresponding J_{O_2} and R_{O_2} on a rapid (sub-hourly) time scale. This research is therefore unique in that it assesses the transient nature of sediment O_2 uptake by investigating the effect of seiche-induced dynamic forcing on the vertical O_2 distribution under natural, in situ conditions from both sides of the SWI.

2.3 Methods

2.3.1 Study site and in situ instrumentation – We performed a 12-h field campaign (21:00 h on 27 August to 09:00 h on 28 August 2007) to obtain high-resolution SWI profile data (O_2 and temperature) and velocity data in Lake Alpnach, Switzerland. Lake Alpnach has a simple elliptical shape, a well-established deep current structure, and mesotrophic production (Wüest et al. 2000). The lake is characterized by a relatively high J_{O_2} (ranging annually from ~10 to ~20 mmol m$^{-2}$ d$^{-1}$) and a shallow sediment oxic zone (< 3 mm) that establish steep O_2 gradients at the SWI (Müller et al. 2002; Lorke et al. 2003). Alpine mountain ridges direct thermal winds over the lake causing basin-scale movements of the water body. Two seiche modes are typically observed in summer: a first horizontal-first vertical mode with a period of 8 to 12 h and a first horizontal-second vertical mode with a period of ~24 h (Münnich et al. 1992; Lorke et al. 2003). The dynamic O_2 conditions at the SWI and daily wind forcing make Lake Alpnach an ideal location for this study.

During the campaign, an instrumentation array was deployed on the southwestern slope of Lake Alpnach (46°57′21″ N, 8°17′53″ E) at a depth of 22 m. Velocity data were collected continuously at a single point using an acoustic Doppler velocimeter (ADV; Vector, Nortek) and as vertical profiles using an acoustic Doppler profiler (ADP; Aquadopp, Nortek). Thermistors (TR-1060, RBR Ltd.) were placed on the ADP tripod to resolve the temperature structure. A
micro-profiler (MP4, Unisense A/S) was used to measure high-resolution O₂ and temperature profiles across the SWI. A Conductivity-Temperature-Depth (CTD; SBE-19, Seabird Electronics) profiler, which also measured O₂, was used to profile the water column near the experiment site every 2 h for background information on O₂ and density stratification. Detailed information about the primary components of the experimental setup is provided below. Frequently used acronyms and notations are defined in Table 2.1.

2.3.1.1 ADV velocity measurements – An ADV was used to continuously measure three-dimensional current time series at 32 Hz, positioned via tripod at 10 cm above the SWI. Accuracy of the velocity measurements is 0.5% of measured value ±0.1 cm s⁻¹. ADV velocity data were used to analyze the current structure and to estimate energy dissipation rate and friction velocity at 10 cm above the SWI.

2.3.1.2 ADP velocity measurements – A 2-MHz ADP equipped with three acoustic beams slanted at 25° was used to measure BBL current profiles. Accuracy of the velocity measurements is 1% of measured value ±0.5 cm s⁻¹. The ADP was positioned (via tripod) downward looking and measured profiles from 1.60 m to 0 m above the sediment, with 32 measurement cells (5-cm bin size). Samples were obtained in burst mode with 1024 samples per ensemble at a rate of 8 Hz. ADP velocity data were used to estimate bottom drag coefficients at 1 m above the SWI as an independent verification of ADV velocity data.

2.3.1.3 O₂ and temperature logger measurements – BBL temperature (i.e., density) structure was continuously measured using a string of 20 thermistors positioned every 25 cm on the leg of the ADP tripod from 0 m to 4.75 m above the sediment. Measurements were obtained using TR-1060 thermistors, which have a response time of < 3 s, accuracy of ±2 × 10⁻³ °C, resolution of < 5 × 10⁻⁵ °C, and drift of < 2 × 10⁻³ °C yr⁻¹. A logger measuring both temperature and O₂ (TDO-2050, RBR Ltd.) was mounted on the micro-profiler at 8 cm above the sediment. In addition to TR-1060 temperature specifications, the TDO-2050 has a measurement range of 0% to 150% O₂ saturation, with an accuracy of ±1%. TDO-2050 O₂ data were calibrated via Winkler titration of BBL water sampled at the same depth using a Niskin bottle. The calibrated
TDO time series and a zero reading from anoxic sediment were then used for calibration of micro-profiler O₂ measurements.

2.3.1.4 Microsensor O₂ and temperature measurements across SWI – An in situ autonomous micro-profiler equipped with microsensors (one Clark-type O₂ sensor and one thermo-coupled temperature sensor, Unisense A/S) was used for microprofiling across the SWI. The sensors have tip diameters of 100 \(\mu \text{m} \), which allow for fast response time (90% in < 8 s), negligible stirring sensitivity, and ~100-\(\mu \text{m} \) spatial resolution. Vertical alignment of the microsensors was established by lowering the group of microsensors toward quiescent water and adjusting sensors until all tips touched the water surface simultaneously. Profiles were obtained every ~50 min and were acquired as follows: 10-mm resolution from 10 cm to 1 cm above the SWI, 1-mm resolution from 1 cm to 0.5 cm above the SWI, 0.1-mm resolution from 0.5 cm above to 0.5 cm below the SWI. Following a brief pause to establish equilibrium, ten data points were collected at each depth at a rate of 1 Hz (inspection of measurement set showed no trend in variation, thus confirming data aliasing did not occur).

We measured 14 O₂ profiles during the experiment. The O₂ profile number (1 – 14) corresponds to the time each profile was obtained and is used as the reference for comparison with other parameters (e.g., turbulence). In the absence of a video camera, the location of the SWI was determined by both visual interpretation of each profile (based on identifying linear DBL regions and kinks in the profiles due to porosity differences between the sediment and the water column; Røy et al. 2004) and using standard deviations of O₂ profile data (variation should decrease approaching the SWI due to reduced fluctuations in turbulence; Müller et al. 2002; Brand et al. 2007). Estimates of the SWI using O₂ standard deviations were comparable to estimates based on visual interpretation, though consistently ~1 mm deeper. Correspondingly, previous work has shown the variance method to systematically overestimate \(\delta_{\text{DBL}} \) due to concentration fluctuations protruding into the sediment (Røy et al. 2004). The SWI location predicted by both methods did remain relatively constant across our profile series however. Hence, even if the estimated SWI location was slightly erroneous, this would not affect comparison among profiles.
2.3.2 O₂ uptake and DBL analyses – O₂ uptake is frequently evaluated for cohesive sediment using a water-side approach based on Fick’s first law of diffusion (Rasmussen and Jørgensen 1992):

\[
J_{O_2} = \varphi D \frac{\partial C}{\partial z} = \varphi D \frac{C_{\text{bulk}} - C_{\text{SWI}}}{\delta_{\text{DBL}}} \quad [\text{mmol m}^{-2} \text{ d}^{-1}]
\]

(2.1)

where \(D\) is the molecular diffusion coefficient for O₂ in water (m² d⁻¹), \(\varphi\) is porosity (m³ voids m⁻³ total volume; taken as unity in the water column), and \(\partial C/\partial z\) is the O₂ concentration gradient in the linear portion of the DBL immediately above the SWI (i.e., the change in the O₂ concentration, \(C\), over distance \(z\); mmol m⁻⁴).

While this is one of the most direct approaches for evaluating \(J_{O_2}\), there are several problems associated with quantifying \(\delta_{\text{DBL}}\). The short residence time of O₂ near the SWI and rapid variations in \(\delta_{\text{DBL}}\) due to BBL turbulence make it difficult to accurately characterize the DBL with microsensor measurements (Røy et al. 2004; O'Connor and Hondzo 2008). Furthermore, the transition from the linear DBL to the bulk BBL region is often indistinct (Wüest and Lorke 2003). To address this issue, Jørgensen and Revsbech (1985) established an ‘effective’ DBL, obtained by extrapolating \(\partial C/\partial z\) at the SWI to the point where O₂ levels reach the average concentration of the BBL (\(C_{\text{bulk}}\); Fig. 2.1) as defined by the second part of Eq. 2.1 (on the right-hand side). It has been shown, however, that \(\delta_{\text{DBL}}\) is often overestimated by the effective DBL (Hondzo et al. 2005; O’Connor and Hondzo 2008). Additionally, microsensors have been found to alter the structure of the DBL by ~25-45%, possibly due to increased flow around the microsensor shaft compressing the DBL below the sensor tip (Glud et al. 1994; Glud 2008). A decreased \(\delta_{\text{DBL}}\) caused by microsensor compression would obviously result in an overestimation of \(J_{O_2}\). Considering the variability of the DBL and subsequent difficulties in characterizing \(\delta_{\text{DBL}}\), it may be more appropriate to regard \(\delta_{\text{DBL}}\) as a conceptual parameter rather than as a physical quantity.

Although problems with quantifying \(\delta_{\text{DBL}}\) are avoided when using sediment-side methods, these methods are often more intensive due to relatively complex sediment processes. In addition to accounting for \(\varphi\) effects (Eq. 2.1), changes in O₂ consumption and storage in the sediment must also be accurately quantified. The balance between the amount of O₂ taken up by
the sediment (characterized by J_{O2}) and the amount consumed within the sediment (characterized by R_{O2}) is shown by:

$$J_{O2} = \int_{0}^{z_{max}} R_{O2v} \, dz + \int_{0}^{z_{max}} \frac{\partial C}{\partial t} \, dz \quad [\text{mmol m}^{-2} \text{d}^{-1}] \quad (2.2)$$

where volumetric R_{O2v} (mmol m$^{-3}$ d$^{-1}$) and the change in O$_2$ concentration over time ($\partial C/\partial t$; mmol m$^{-3}$ d$^{-1}$) are integrated over the sediment profile to z_{max} (designated in this study as the depth where O$_2 < 3 \mu$mol L$^{-1}$). The first term on the right-hand side of Eq. 2.2 represents the amount of O$_2$ consumed per unit time while the second term represents the temporal change of the O$_2$ content in the sediment (Higashino et al. 2004). Depth-integrated values from Eq. 2.2 are defined by areal R_{O2a} and $\partial C/\partial t_a$, respectively (mmol m$^{-2}$ d$^{-1}$; Table 2.1), for each profile to allow for direct comparison with J_{O2}. Eq. 2.2 shows that J_{O2} and R_{O2a} are equal at steady-state whereas O$_2$ accumulation or depletion ($\partial C/\partial t_a$) occurs during transient conditions.

To comprehensively assess how dynamic forcing affects sediment O$_2$ uptake, we analyzed J_{O2} and δ_{DBL} for each microsensor profile with five different methods using data from both the water-side (direct and u^* methods) and sediment-side (curvefit, zonefit, and model methods) of the SWI. These five methods were selected to evaluate J_{O2} as a function of O$_2$ microsensor and velocity data. Problems with specific measurement techniques (e.g., measuring δ_{DBL}) or analytical methods should be minimized by the use of a combination of methods based on water-side velocities and water- and sediment-side microsensor data. A more detailed comparison of the methods used to estimate sediment O$_2$ uptake will be presented in a companion paper (Ch. 3).

For the direct method, $\partial C/\partial z$ was obtained directly from the DBL region of O$_2$ microsensor profiles and then incorporated into Eq. 2.1 to evaluate δ_{DBL} and J_{O2} (Jørgensen and Revsbech 1985). For the u^* method (Hondzo et al. 2005), dimensionless power law scaling was applied to friction velocity (u^*) data derived from ADV velocity series to universally scale the vertical O$_2$ distribution in the BBL for δ_{DBL}, which was then used to solve for J_{O2} via Eq. 2.1.

O$_2$ profile data from the sediment side were evaluated by fitting a polynomial equation $C(z)$ to the porewater region of each O$_2$ profile, focusing on the region immediately below the SWI (curvefit method). The derivative of $C(z)$ can then be incorporated into Eq. 2.1 to solve for
J_{O2} and δ_{DBL} (Glud 2008). Third-order $C(z)$ polynomial equations were found to best fit the series of profile data, with the exception of profile 6 which required a fourth-order polynomial.

Porewater data were also evaluated using the numerical model PROFILE (Berg et al. 1998), which analyzes data based on a numerical analysis that defines multiple zones of constant consumption to best describe each O$_2$ profile (zonefit method). Integrating depth-specific R$_{O2v}$ (evaluated at 0.1-mm increments) over the depth of the sediment oxic zone yields the overall areal R$_{O2a}$ per profile. R$_{O2a}$ can then be used to calculate J_{O2} via Eq. 2.2. Model parameters used include $D = 1.97 \times 10^{-9}$ m2 s$^{-1}$ at 20°C (corrected for temperature using the Stokes-Einstein relationship; Li and Gregory 1974; Agrega and Lee 2005), with irrigation and bioturbation effects assumed negligible and boundary conditions (evaluated at the bottom of each profile) of $J_{O2} = 0$ mmol m$^{-2}$ d$^{-1}$ and $C = 0$ μmol L$^{-1}$.

We further analyzed sediment porewater data with the sediment module of the aquatic system simulation software AQUASIM (Reichert 1994), which was used to predict the δ_{DBL} required to model O$_2$ porewater profiles via a simple Monod model for O$_2$ consumption (model method). Model parameters and setup details for the AQUASIM model utilized in this study are defined by Brand et al. (2009). We were able to accurately model our series of sediment O$_2$ profiles in AQUASIM with a single set of Monod parameters (maximum oxidation rate (μ) = 5920 mmol m$^{-3}$ d$^{-1}$ and half-saturation constant (K_{O2}) = 19.1 μmol L$^{-1}$) and C_{SW1} as the only variable. We then incorporated these Monod parameters into a second model (see Eq. 6 in Brand et al. 2009) in which C_{bulk} was designated as the upper boundary condition and δ_{DBL} was used as the sole fitting parameter to reproduce our sediment O$_2$ profiles.

Sediment cores from our experiment site were analyzed for ϕ (porewater volume per total volume) following Dalsgaard et al. (2000) to characterize diffusive transport in the sediment and ϕ values of 0.97 and 0.91 in the upper 5 mm were obtained. Using these ϕ results as a point of reference and J_{O2} values from an independent set of profiles (obtained ~1 m from our experiment site, measured prior to the series of 14 assessed in the primary study) as goals, ϕ was also estimated on a mm-scale with PROFILE (which uses ϕ as an input parameter) via a trial-and-error approach. Similar porosities (0.95 in the upper 1 mm of sediment and 0.90 below) were obtained and these ϕ values were used in Eq. 2.1 and/or as model parameters.

The transience of our system and sediment O$_2$ consumption as a function of O$_2$ availability were evaluated using Eq. 2.2. Proximity to steady-state was determined by
calculating $\partial C/\partial t_a$ for each profile by comparing the preceding and following profiles, evaluating $\partial C/\partial t_v$ at each depth, and integrating over z_{max}. Because the direct, u^*, curvefit, and model methods estimate J_{O_2} directly, results from these methods were used to evaluate O$_2$ consumption (as characterized by R_{O_2a}) via Eq. 2.2 as a function of $\partial C/\partial t_a$. The zonefit method predicts depth-specific O$_2$ consumption directly and hence Eq. 2.2 was used to estimate J_{O_2} from R_{O_2a} values based on PROFILE results.

Based on results of the five methods, mean values of J_{O_2}, R_{O_2a}, and δ_{DBL} were calculated for each profile. These parameters were statistically analyzed based on a normal distribution. Standard deviations (σ) were calculated for J_{O_2} and δ_{DBL} data (\(\sigma\) calculations for R_{O_2a} were unnecessary since J_{O_2} and R_{O_2a} are directly correlated via Eq. 2.2). Estimates obtained from the five methods were comparable, as shown below.

2.3.3 Inertial dissipation analyses

The dissipation rate of turbulent kinetic energy, ε (W kg$^{-1}$), was estimated using the inertial dissipation method (Grant et al. 1962). The analysis is based on the inertial subrange where the spectrum is expressed in the wavenumber (k) domain:

$$E(k) = \alpha \varepsilon^{\frac{2}{3}} k^{-\frac{5}{3}} \quad [m^3 s^{-2}] \quad (2.3)$$

where velocity fluctuation follows a $k^{-5/3}$ slope for eddy sizes of typically dm to m (Fig. 2.2a). We used $\alpha = 1.56$ for the experimentally estimated, three-dimensional Kolmogorov constant (Wyngaard and Coté 1971). With the ADV, we measured horizontal (longitudinal and lateral) and vertical velocity fluctuations 10 cm above the sediment. Dissipation rates can be obtained from the longitudinal component of the one dimensional spectrum expressed in the wavenumber (k_1) domain:

$$\varphi_{11}(k_1) = \alpha \varepsilon^{\frac{2}{3}} k_1^{-\frac{5}{3}} \quad [m^3 s^{-2}] \quad (2.4)$$

and the two transversal components of the power spectrum:

$$\varphi_{22}(k_1) = \varphi_{33}(k_1) = \alpha \varepsilon^{\frac{2}{3}} k_1^{-\frac{5}{3}} \quad [m^3 s^{-2}] \quad (2.5)$$
\(\alpha_1 = \frac{18}{55} \alpha \) and \(\alpha_2 = \frac{4}{3} \alpha_1 \). Rather than fitting the -5/3 slope to the inertial subrange, the respective power spectrum (Eqs. 2.4 and 2.5) is multiplied by \(k^{5/3} \). This procedure transforms the spectrum so that it is only dependent on \(\varepsilon \) as \(E(k) \times k^{5/3} \) becomes constant (Fig. 2.2a). Dissipation \((\varepsilon) \) is then calculated by taking the average of the inertial subrange. All three velocity fluctuation records were used to quantify the value of \(\varepsilon \) (longitudinal, transversal planar, and transversal vertical; Eqs. 2.4 and 2.5) over a time span of approximately 50 min (Fig. 2.2b), which corresponds to the measurement period of each O2 profile.

To account for the intermittency of turbulence, \(\varepsilon \) is averaged by assuming a lognormal distribution (Baker and Gibson 1987). The most likely average of the three \(\varepsilon \) values (\(\bar{\varepsilon} \)) is

\[
\bar{\varepsilon} = \exp \left(\bar{\ln}(\varepsilon) + \frac{\sigma_{\ln(\varepsilon)}^2}{2} \right) \quad [W \ kg^{-1}] \quad (2.6)
\]

where \(\bar{\ln}(\varepsilon) \) is the average of the ln-value of \(\varepsilon \) and \(\sigma_{\ln(\varepsilon)} \) is the standard deviation, or intermittency, of the ln(\(\varepsilon \)) values (Table 2.2).

2.3.4 Friction velocity analyses

Friction velocities (\(u_\ast \)) were calculated at a height (\(h \)) of 10 cm above the sediment from the estimated \(\varepsilon \) values using the law-of-the-wall assumption:

\[
 u_\ast = \sqrt{\frac{\varepsilon \kappa h}{\kappa h}} \quad [m \ s^{-1}] \quad (2.7)
\]

where \(\kappa \) (the von Karman constant) is 0.41. The resulting \(u_\ast \) values (Table 2.2) quantify the frictional stress of BBL currents on the sediment and thus, similar to \(\varepsilon \), describe the level of turbulence in the BBL.
2.4 Results

2.4.1 Seiche dynamics – We acquired data for 12 hours and captured a full 8-h seiche cycle. During the campaign, bottom currents moved initially from the southwest toward the northeast, reached the current reversal point and then reversed direction toward the southwest, similar to the motion of a pendulum (as depicted in Fig. 2.3a, where the schematics show the water body moving back and forth relative to our experiment site). Corresponding changes in current velocity are shown in Fig. 2.3b. During the observed seiche cycle, water from higher elevations in the BBL moved down the southwestern slope with increasing velocity toward the northeast. Current velocity reached a maximum of 2.3 cm s\(^{-1}\) (at 23:50 h) during this period. At the current reversal point (~04:00 h), velocities in the BBL reached a minimum value of 0.6 cm s\(^{-1}\). When the water mass then shifted back toward the southwest, water from the central region of the BBL moved toward the southwestern slope and velocities increased to levels observed prior to current reversal, reaching a maximum value of 2.3 cm s\(^{-1}\) (at 07:44 h).

Lorke et al. (2002) demonstrated that law-of-the-wall theory (used to estimate \(u^*\)) only applies in cases of turbulence where longitudinal velocity is greater than 1 cm s\(^{-1}\) at 1 m above the sediment. Most of our velocities (obtained at 10 cm above the sediment) were within this range, with only velocities during the period of current reversal (profiles 7 – 9) falling significantly below this level (Fig. 2.3b). Accordingly, a majority of our profiles were consistent with the law-of-the-wall profile. However, for velocities smaller than this threshold, the logarithmic profile broke down and no characteristic features of the BBL could be identified (as independently confirmed by O\(_2\) microsensor measurements). To verify the applicability of the law-of-the-wall to the full series of our velocity data, we employed the bottom drag coefficient (\(C_{1m}\)) via:

\[
u_\# = \sqrt{C_{1m} U_{1m}} \quad [\text{m s}^{-1}] \quad (2.8)
\]

where \(U_{1m}\) is the longitudinal velocity (m s\(^{-1}\)) at 1 m above the sediment obtained from the downward-looking ADP. The bottom drag coefficient relates the Reynolds stress on the sediment surface and the mean current velocity at a specified height. A \(C_{1m}\) value of 0.0033 was obtained for the full set of velocity data and a \(C_{1m}\) of 0.0013 was obtained when the velocity data
below 1 cm s\(^{-1}\) were excluded. These \(C_{1m}\) values are comparable to the typical range of 0.001 – 0.003 (Wüest and Lorke 2003) for smooth-bottom boundaries (such as lake-bottom sediments).

2.4.2 Temperature and \(O_2\) distribution – Temperature and \(O_2\) in the water column and near the sediment are shown to be strongly affected by seiche-induced variations in current velocity (Fig. 2.4). At the beginning of the measurement period (21:00 h), a cold water mass from the central, well-mixed BBL moved across the experiment site (Fig. 2.4a – c). As the water mass shifted toward the northeast, warmer water from the upper BBL moved toward the experiment site (approaching 04:00 h) as the current reversal point was approached (Fig. 2.3). Following reversal of current direction, velocity increased and the cooler, well-mixed region of the BBL moved back to the experiment site as the current shifted the water mass toward the southwest.

Variations in temperature and \(O_2\) in the BBL at 8 cm above the sediment are shown in Fig. 2.4a. Changes in temperature are shown as a function of depth in Fig. 2.4b (200 to 30 cm above the SWI) and Fig. 2.4c (1 cm above to 0.25 cm below the SWI). From Fig. 2.4b – c, it is apparent that while temperature varied over time (on the order of ~2°C), the vertical temperature profile remained relatively constant with depth but was displaced first in the positive and then negative direction. However, while changes in \(O_2\) are relatively minor (on the order of ~10 \(\mu\)mol L\(^{-1}\)) at 8 cm above the sediment (Fig. 2.4a), \(O_2\) variations are observed on a much greater scale near the SWI (Fig. 2.4d; 1 cm above to 0.25 cm below the SWI). When velocity decreased during profiles 5 to 9, \(O_2\) decreased from ~100 \(\mu\)mol L\(^{-1}\) to 70 \(\mu\)mol L\(^{-1}\) at 1 cm above the SWI and from 59 \(\mu\)mol L\(^{-1}\) to 5 \(\mu\)mol L\(^{-1}\) at the SWI. Furthermore, the sediment approached anoxia as sediment \(O_2\) was depleted during this period.

The controlling influence that dynamic forcing has on the vertical distribution of \(O_2\) above and below the SWI is emphasized in Fig. 2.5. \(O_2\) profiles are separated into panels according to the direction of profile movement, which strongly corresponds to changes in velocity magnitude. The oscillating motion of the water body is apparent in the directional shifts of the \(O_2\) profiles over the seiche cycle. As currents intensify, \(O_2\) levels in the water and in the sediment increase, as shown by profiles 2 – 5 (Fig. 2.5a) and 9 – 14 (Fig. 2.5c); however, as velocity decreases approaching current reversal, \(O_2\) throughout the full length of the profile drops to negligible levels (profiles 5 – 9; Fig. 2.5b). Profile 1 is not shown due to a slight misalignment with the other profiles that likely resulted from equipment settling into the
sediment following deployment (discussed further below). A key point shown in Fig. 2.5 is the elasticity of the system, in that the vertical O$_2$ distribution changes significantly as it shifts from oxic (Fig. 2.5a) to nearly anoxic conditions (Fig. 2.5b) but then returns to an oxic distribution (Fig. 2.5c) close to its initial state (Fig. 2.5a).

In Fig. 2.5a (profiles 2 – 5) and Fig. 2.5c (profiles 9 – 14), the oxic zone extends further into the sediment and δ$_{DBL}$ decreases as velocity increases, clearly illustrating how current-induced mixing forces the vertical O$_2$ structure at the SWI. After velocity peaked at approximately 23:50 h (Fig. 2.5a), z_{max} and C_{SWI} reached maximum values (2.2 mm and 59 μmol L$^{-1}$, respectively) while δ$_{DBL}$ reached a minimum of 1.0 mm. This relationship is shown in reverse in Fig. 2.5b (profiles 5 – 9) where, as velocity decreases during current reversal (between profiles 8 and 9 at approximately 04:00 h), δ$_{DBL}$ increases to the point of being undefined and the oxic zone almost completely disappears (minimum $z_{max} = 0.3$ mm) as the sediment goes anoxic.

2.4.3 O$_2$ flux and δ$_{DBL}$ – Mean values of J$_{O2}$ and δ$_{DBL}$ were obtained by averaging results from the five analytical methods used to evaluate O$_2$ profile and u^* data (Table 2.3). Consequently, both water-side (transport) and sediment-side (consumption) influences on J$_{O2}$ and δ$_{DBL}$ are reflected in the average values. Values of J$_{O2}$ based on R$_{O2a}$ from the zonefit model were corrected for transient accumulation of O$_2$ per Eq. 2.2. During energetic periods (maximum $\varepsilon = 1.2 \times 10^{-8}$ W kg$^{-1}$; profile 4), δ$_{DBL}$ reached a minimum of 1.0 mm and J$_{O2}$ increased to a maximum of 7.0 mmol m$^{-2}$ d$^{-1}$ (Table 2.3). As turbulence decreased approaching the current reversal point (minimum $\varepsilon = 7.8 \times 10^{-12}$ W kg$^{-1}$; profile 9), δ$_{DBL}$ expanded significantly as there was no longer sufficient turbulence to maintain an established DBL (Fig. 2.5, Table 2.3). Although a DBL in the classical sense is not maintained under these quiescent conditions (Gantzer and Stefan 2003; Røy et al. 2004), we nevertheless quantified δ$_{DBL}$ during this period as a relative measure for comparison. Using independent results from all five methods, a maximum average δ$_{DBL}$ of 7.8 ± 2.2 mm was estimated for profile 9 (Table 2.3).

During the period of weak turbulence and subsequently increased δ$_{DBL}$, J$_{O2}$ decreased by 85%, from 7.0 mmol m$^{-2}$ d$^{-1}$ to 1.1 mmol m$^{-2}$ d$^{-1}$ (Fig. 2.6). The substantial short-term variability in J$_{O2}$ in response to changes in turbulence is emphasized in Fig. 2.6. However, an explicit relationship between J$_{O2}$ and ε cannot be defined by the linear correlation shown in Fig. 2.6 as J$_{O2}$ is also affected by other variables (e.g., C$_{bulk}$ and R$_{O2}$).
The relatively small standard deviation of J_{O2} and δ_{DBL} obtained from the different methods per profile as compared to the overall temporal variation in averages (J_{O2} or δ_{DBL}) shows that comparable estimates were obtained from the different methods (Table 2.3). Waterside methods did yield slightly but consistently higher values of J_{O2} (with correspondingly lower values of δ_{DBL}) though. A comparative evaluation of method results is being performed for the companion methods study (Ch. 3). Standard deviation evolves according to changes in turbulence. When turbulence levels are low, increasing δ_{DBL} and decreasing ε lead to greater uncertainty and subsequently higher σ (or intermittency) for these parameters. Thus, observed increases in variability in δ_{DBL} and ε during the period of weak turbulence (Tables 2.2 and 2.3) are more an effect of analysis than a reflection of the quality of data. While J_{O2}, δ_{DBL}, and ε values for profile 1 exhibit unusually high variability, these increased deviations are reflected in data obtained with multiple instruments (ADV and micro-profiler; Tables 2.2 and 2.3) and are observed only at the beginning of the campaign; hence, they are likely a result of equipment settling at the lake bottom following deployment.

2.4.4 Sediment oxic zone

Changes in the extent of the sediment oxic zone correspond to variations in J_{O2} and δ_{DBL} in response to turbulence. When O_2 transport into the sediment escalated as the DBL was compressed by elevated turbulence (Fig. 2.6), both z_{max} (Fig. 2.5) and the vertically integrated mass of O_2 (M_{O2}; Table 2.4) increased significantly as O_2 penetrated deeper into the sediment. The oxic zone is observed to reach a maximum z_{max} of 2.2 mm during active turbulence (corresponding $\delta_{DBL} = 1.0$ mm, $J_{O2} = 6.9$ mmol m$^{-2}$ d$^{-1}$, and $M_{O2} = 54$ μmol m$^{-2}$). Conversely, z_{max} decreased to a minimum of 0.3 mm and C_{SW1} decreased from 59 to 5 μmol L$^{-1}$ during negligible turbulence (corresponding $\delta_{DBL} = 7.6$ mm, $J_{O2} = 1.3$ mmol m$^{-2}$ d$^{-1}$, and $M_{O2} = 3$ μmol m$^{-2}$) as the sediment approached anoxia. The strongly coupled behavior observed in these parameters is supported by recent modeling work based on data from Lake Alpnach (Brand et al. 2009) which shows that an increase in δ_{DBL} (from 0.25 to 1.5 mm) results in decreased z_{max} (from 1.7 to 1.2 mm) and decreased J_{O2} (from 15 to 9.5 mmol m$^{-2}$ d$^{-1}$).

2.4.5 Profile dynamics

Eq. 2.2 was used to determine proximity to steady-state. Although significant variation was observed in our O_2 profiles over the 12-h measurement period (Fig. 2.5), O_2 accumulation and/or depletion within the sediment was insignificant (Table 2.4), with an
average $\partial C/\partial t_a$ of ± 0.30 mmol m$^{-2}$ d$^{-1}$ or \sim5% of the average J_{O2} (5.2 mmol m$^{-2}$ d$^{-1}$) over the full measurement period. The rate at which O$_2$ enters the sediment (J_{O2}) equals the areal O$_2$ consumption rate (R_{O2a}) at steady-state (Eq. 2.2) and these values were found to be almost equivalent in our mesotrophic lake system (Table 2.4). Additionally, the average J_{O2} and M_{O2} (32 μmol m$^{-2}$; Table 2.4) for the 12-h period indicate a mean O$_2$ residence time in the sediment of 9 min. Because profiles were obtained every \sim50 minutes, quasi-steady-state conditions prevailed.

2.5 Discussion

2.5.1 Forcing of O$_2$ distribution – Lorke et al. (2003) show that δ_{DBL} is controlled primarily by turbulence rather than velocity based on an observed phase lag between ε, δ_{DBL}, and current velocity, where ε and δ_{DBL} lagged consistently (~1.5 h) behind current velocity at 1 m above the sediment. Although we do observe a direct relationship between ε and δ_{DBL}, a defined phase lag between these parameters and current velocity was not evident within the temporal resolution of our measurements (Fig. 2.7). However, it has been shown that this delay becomes greater with increasing distance from the sediment (Lorke et al. 2002). The phase lag would therefore be expected to be much shorter (~10 min) during our experiment.

During periods of relatively high velocity (profiles 1 – 5 and 9 – 14), turbulence increased as cold water from the deeper region of the BBL moved across our experiment site (Figs. 2.4, 2.7). The movement of this cooler water mass along the slope may have established small inverse temperature gradients that produced additional turbulence due to bottom convective mixing (Lorke et al. 2005). Turbulence compressed the DBL during these periods, which facilitated increased O$_2$ transport from the BBL down to the sediment and resulted in greater sediment O$_2$ uptake and an enhanced sediment oxic zone. As the water mass approached current reversal (profiles 5 – 9), decreased turbulence, J_{O2}, and z_{max} are observed as current velocity subsided (Figs. 2.5, 2.6).

Temperatures in the BBL and near the SWI increased (Fig. 2.4a – c) in response to the influx of warm water from farther up the slope (confirmed by CTD data, not shown). Variations in temperature are reflected over the full microsensor profile depth and are not affected by changes in δ_{DBL}, which is likely due to the relatively rapid rate of heat transfer (compared to
molecular diffusion) and the fact that temperature is not consumed by the sediment (unlike O₂). Hence, once the near-surface sediment temperature equilibrates with that of the BBL, the sediment no longer behaves as a heat sink. Conversely, significant variation was observed in the vertical distribution of O₂ across the SWI which may be largely attributed to O₂ consumption. In the absence of turbulence, while O₂ remained at ~110 μmol L⁻¹ several cm above the SWI, the O₂ supply through the extended DBL was insufficient to maintain the sediment oxic zone (Figs. 2.4, 2.6). As J₀₂ diminished and O₂ was consumed in the sediment, O₂ in the water immediately overlying the sediment, C_{SWI}, and z_{max} decreased significantly (Figs. 2.4, 2.5). These findings emphasize that, even when O₂ levels in the BBL remain relatively high, the O₂ distribution on both sides of the SWI and the corresponding J₀₂ are strongly governed by turbulence, as supported by previous work (Jørgensen and Revsbech 1985; Brand et al. 2009; Gantzer et al. 2009a).

2.5.2 Variations in sediment O₂ consumption – Quasi-steady conditions prevailed (J₀₂ and R₀₂ₐ differed by only 5%) and, correspondingly, both J₀₂ and R₀₂ (quantified by R₀₂ₐ and R₀₂ᵥ) varied in response to dynamic forcing, as shown by R₀₂ₐ data in Table 2.4. This indicates that sediment O₂ consumption was directly related to O₂ availability within the sediment as supplied via J₀₂. Monod and first-order kinetic models are frequently used to characterize sediment O₂ consumption as a function of O₂ concentration in the sediment (Rasmussen and Jørgensen 1992; Higashino et al. 2004). However, due to the variety of O₂-consuming processes and the complexity of the kinetics, simple zero-order kinetics is frequently assumed (Bouldin 1968; Jørgensen and Boudreau 2001; Roy et al. 2004). Irrespective of the kinetics, though, it has been reported that when O₂ uptake is at least partially governed by diffusive transport, R₀₂ does become dependent on O₂ concentration below O₂ levels of 20 – 30 μmol L⁻¹ (Santschi et al. 1990; Berg et al. 2003). Sediment O₂ levels remained close to this minimum range during our study (Fig. 2.5). Our results therefore demonstrate dependence of R₀₂ on O₂ availability under limiting O₂ conditions regardless of the kinetics involved. Models based on variable zones of O₂ consumption and Monod kinetics were used (zonefit and model methods, respectively) to evaluate J₀₂ and ð_{DBL} with comparable results (Table 2.3; Ch. 3).

Variability in sediment O₂ consumption was further evaluated using PROFILE (zonefit method) to characterize regions of differing R₀₂ᵥ within the sediment oxic zone as a function of
time and depth, as shown in Fig. 2.8. Zone-specific \(R_{O2v} \) values predicted by PROFILE were corrected for \(\partial C/\partial t \) (Eq. 2.2). PROFILE results show that \(R_{O2v} \) was consistently higher near the SWI and then decreased significantly with depth (Fig. 2.8). Results by O’Connor and Harvey (2008) and Brand et al. (2009) also show increased \(R_{O2v} \) immediately below the SWI. \(O_2 \) consumption in the upper sediment region is often elevated due to mineralization of freshly deposited organic matter at the sediment surface as well as re-oxidation of subsequently released reduced inorganic species (Santschi et al. 1990; Zhang et al. 1999). Accordingly, increased heterotrophic bacterial abundance and activity in the sediment surface layer is common (Fischer et al. 2002, 2005).

Variations in turbulence (Fig. 2.8a) coupled with changes in PROFILE-predicted consumption zones (Fig. 2.8b – d) support our observation of increased \(J_{O2} \) leading to increased \(O_2 \) consumption (Table 2.4). The upper sediment layer is obviously most directly affected by turbulence in the BBL and variations in \(\delta_{DBL} \). Consumption in this upper zone is observed to increase during periods of peak turbulence when elevated \(O_2 \) concentrations above the sediment and a thinner \(\delta_{DBL} \) facilitate enhanced \(J_{O2} \). Elevated \(R_{O2v} \) in the upper sediment as a result of increased \(O_2 \) availability implies that the intrinsic capacity of the sediment for \(O_2 \) consumption (PSOD) exceeds \(J_{O2} \), indicating water-side control of sediment \(O_2 \) uptake (O’Connor and Harvey 2008). When \(J_{O2} \) increased during periods of elevated turbulence, the sediment oxic zone is observed to increase while \(\partial C/\partial t \) remained relatively small, suggesting that the additional \(O_2 \) entering the sediment was being consumed rather than accumulating in the sediment (Fig. 2.8b, d, Table 2.4). However, during periods when turbulence is at a minimum and \(\delta_{DBL} \) extends to the point of becoming undefined, thereby limiting \(O_2 \) transport and subsequent availability at the SWI, consumption is characterized by a minimal zone and \(R_{O2v} \) drops significantly (Fig. 2.8c, Table 2.4). At this point, the sediment oxic zone almost completely disappears. The elasticity observed in sediment-water \(O_2 \) profiles shown in Fig. 2.5 is also evident in sediment \(O_2 \) consumption zones shown in Fig. 2.8, although it is less direct due to the complexity of sediment processes. The distribution of \(O_2 \) consumption zones for profile 13 (Fig. 2.8d) returns to a structure similar to that of profile 4 (Fig. 2.8b) as turbulence increases following a substantial shift to a smaller, single zone for profile 8 during the stagnant period (Fig. 2.8c).

Our results show that variations in \(\delta_{DBL} \) have a significant effect on \(J_{O2} \), \(R_{O2v} \) (both areally and volumetrically), and resultant \(z_{max} \). It is important to emphasize that in this study, diffusion...
time for O$_2$ across the DBL and transport time through the sediment oxic zone are comparable (~10 to 20 min during the majority of the campaign when turbulence levels were high enough to maintain a defined DBL). When the timescale of O$_2$ diffusion through the DBL is short in comparison to transport through the sediment oxic zone (e.g., oligotrophic environments where z_{max} can be measured in cm and sediment O$_2$ residence time can be on the order of days), changes in δ_{DBL} would be unlikely to have a strong influence on J_{O_2}, R_{O_2}, and z_{max} (Glud et al. 2007).

2.5.3 Scale of variation

Mean values for J_{O_2} (Table 2.4) obtained during this study are comparable to values found in previous studies of BBL turbulence at the same location. Brand et al. (2008) estimated an average J_{O_2} of 13 ± 2 mmol m$^{-2}$ d$^{-1}$ and Lorke et al. (2003) estimated J_{O_2} to range from 6 to 13 mmol m$^{-2}$ d$^{-1}$, with a corresponding δ_{DBL} range of 0.16 to 0.84 mm. Turbulence and O$_2$ levels in the BBL were higher in these previous studies than those observed during our campaign; this is reflected in our relatively low turbulence estimates and subsequently decreased J_{O_2} and increased δ_{DBL} values. Despite the less energetic conditions, variation in J_{O_2} and the vertical distribution of O$_2$ over the 12-h measurement period was still significant (Figs. 2.5 – 2.7). The fact that we observed such change in these parameters in response to dynamic, though relatively mild, turbulence conditions highlights the dependence of sediment O$_2$ uptake on turbulence.

Not only was J_{O_2} found to vary significantly over the duration of a single seiche cycle (on the order of hours) during our campaign (Fig. 2.6) but it was also observed to change substantially on a sub-hourly time scale. For example, in the course of the 53-min period between profiles 9 and 10 when turbulence increased as the water body shifted back toward the southwest direction following current reversal, J_{O_2} increased from 1.1 mmol m$^{-2}$ d$^{-1}$ to 5.7 mmol m$^{-2}$ d$^{-1}$ (Table 2.4). During this time, ε increased from 7.8×10^{-12} to 2.5×10^{-10} W kg$^{-1}$, δ_{DBL} decreased from 7.8 to 1.7 mm (Fig. 2.7), z_{max} increased from 0.6 to 1.3 mm (Fig. 2.5), and M_{O_2} increased from 5 to 24 μmol m$^{-2}$ (Table 2.4). The high degree of variation observed in J_{O_2} and the vertical O$_2$ distribution over such a brief time period illustrates the transient nature of sediment O$_2$ uptake. While it has been shown that long-term (e.g., annual) average J_{O_2} is typically not influenced by short-term (e.g., hourly) changes in δ_{DBL} (Glud et al. 2007), our results stress the importance of taking turbulence into account when resolving O$_2$ profiles in
order to fully evaluate J_{O_2}. Under dynamic conditions, a system must be characterized in greater detail than what can be discerned from a single profile. An accurate assessment of J_{O_2} and R_{O_2} is not possible without obtaining a comprehensive series of profiles describing the full range of variation in the vertical distribution of O_2. Furthermore, extreme caution should be taken in evaluating PSOD based on R_{O_2v} analyses without considering physical limitations on O_2 transport to the SWI (and subsequent O_2 availability in the sediment) and proximity to long-term steady-state. Variation in PROFILE-predicted R_{O_2v} results for individual profiles (Fig. 2.8) emphasizes how evaluating R_{O_2v} based on a single profile could lead to very different estimates of PSOD. In all likelihood, the average R_{O_2v} observed during our 12-h campaign (3.5 mmol m$^{-3}$ d$^{-1}$ in upper sediment; data not shown) may still significantly underestimate actual PSOD due to the mild turbulence conditions limiting sediment O_2 availability and subsequent consumption.

Technical and logistical restraints often limit the number of in situ microsensor measurements obtained during a given deployment to only a few (Glud et al. 2009), which may be an issue depending on the time scale of the dynamics in the system of interest. During this study, we were able to obtain 14 microprofiles at approximately 50-min intervals. Fluctuations in δ_{DBL} have been previously observed at time scales on the order of seconds (Røy et al. 2004; O’Connor and Hondzo 2008). However, Brand et al. (2009) show that the influence of these rapid variations in δ_{DBL} is negligible on evaluations of mean J_{O_2} and the vertical O_2 distribution near the SWI at time scales appropriate for defining seiche cycles (e.g., min, h). The sub-hourly time scale at which we assessed data is small compared to the 8-h duration of the seiche cycle; hence, a thorough characterization of how seiche-induced variations in sediment O_2 uptake was achieved.

2.6 Conclusion

In conclusion, our results reveal the effect of natural dynamic forcing on the vertical distribution of O_2 across the SWI and on sediment O_2 uptake. Although work has been done that contributes significantly to the understanding of BBL dynamics and flux pathways, these studies have been largely laboratory- or model-based (Røy et al. 2004; Glud et al. 2007; O’Connor and Hondzo 2008). Previous in situ studies have focused primarily on physical, water-side controls of O_2 transport (Gundersen and Jørgensen 1990; Lorke et al. 2003) or spatial and temporal
variations in O$_2$ distribution in sediment (Epping and Helder 1997; Glud et al. 2003, 2009). This study is novel in that we analyzed O$_2$ uptake from both sides of the SWI. In doing so, we have expanded on previous results by analyzing the tight coupling between water-side (turbulence, as characterized by ε) and sediment-side (O$_2$ consumption in sediment, as characterized by R_{O_2}) processes influencing sediment O$_2$ uptake under actual field conditions in a freshwater system. The highly transient nature of J_{O_2} is revealed by rapid changes in the vertical distribution of O$_2$ in both the water and the sediment in response to dynamic forcing via seiche motion. R_{O_2} was shown to adjust quickly to variations in J_{O_2} at quasi-steady-state. Although our study focused on O$_2$ fluxes, knowledge gained regarding the relationship between turbulence and mass transfer at the SWI can be more broadly applied to fluxes of other soluble chemical species (e.g., reduced metals, hydrogen sulfide, methane) as well (Jørgensen et al. 1979; Frenzel et al. 1990; Gantzer et al. 2009b). The crucial role of turbulence is highlighted by the fact that, despite relatively high O$_2$ levels only a few cm above the sediment, O$_2$ transport to the SWI and the extent of the sediment oxic zone both decreased substantially during quiescent periods. The critical control that dynamic forcing can have on J_{O_2} must be considered when evaluating sediment O$_2$ uptake via measuring devices (e.g., benthic chambers) that do not capture natural turbulence conditions. Furthermore, based on the significant changes observed in J_{O_2} during periods as brief as an hour, our results show that using isolated J_{O_2} measurements may be insufficient, particularly in systems experiencing high levels of variable turbulence.

2.7 Acknowledgements

We are grateful to Peter Berg and Miki Hondzo for their useful advice. We also thank Lorenzo Rovelli, Michi Schurter, Chregu Dinkel, and Mathias Kirf, who offered invaluable assistance in the field and with equipment. Helpful feedback from Ronnie Glud, Hans Røy, and an anonymous reviewer substantially improved the manuscript. The research described in this paper has been funded in part by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA. This research was also supported by the United States National Science Foundation (NSF) through the Integrative Graduate Education and Research Traineeship (IGERT) program.
(DGE 0504196) and by the Swiss National Science Foundation, grants 200020-111763 and 200020-120128.

2.8 References

http://www2.dmu.dk/LakeandEstuarineEcology/nice/NICE_handbook.pdf

Table 2.1. Acronyms and notations with corresponding units used for this study.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Acoustic Doppler Aquadopp profiler; used to obtain velocity profile data</td>
</tr>
<tr>
<td>ADV</td>
<td>Acoustic Doppler velocimeter; used to obtain local (pointwise), high-frequency velocity data</td>
</tr>
<tr>
<td>BBL</td>
<td>Bottom boundary layer</td>
</tr>
<tr>
<td>D</td>
<td>Molecular O₂ diffusion coefficient (m² d⁻¹)</td>
</tr>
<tr>
<td>DBL</td>
<td>Diffusive boundary layer</td>
</tr>
<tr>
<td>C₅₀</td>
<td>Concentration of O₂ in bulk BBL (μmol L⁻¹)</td>
</tr>
<tr>
<td>C₅₁</td>
<td>Concentration of O₂ at SWI (μmol L⁻¹)</td>
</tr>
<tr>
<td>∂C/∂tᵥ</td>
<td>Volumetric change in O₂ concentration over time (mmol m⁻³ d⁻¹)</td>
</tr>
<tr>
<td>∂C/∂tₐ</td>
<td>Areal change in O₂ concentration over time (mmol m⁻² d⁻¹)</td>
</tr>
<tr>
<td>∂C/∂z</td>
<td>O₂ concentration gradient (mmol m⁻⁴)</td>
</tr>
<tr>
<td>J₀₂</td>
<td>SWI flux of O₂ into the sediment (mmol m⁻² d⁻¹)</td>
</tr>
<tr>
<td>M₀₂</td>
<td>Vertically integrated mass of O₂ in sediment (μmol m⁻²)</td>
</tr>
<tr>
<td>O₂</td>
<td>Dissolved oxygen (μmol L⁻¹)</td>
</tr>
<tr>
<td>PSOD</td>
<td>Potential sediment O₂ demand (mmol m⁻³ d⁻¹)</td>
</tr>
<tr>
<td>R₀₂</td>
<td>O₂ consumption rate in sediment, defined volumetrically (R₀₂ᵥ) or areally (R₀₂ₐ)</td>
</tr>
<tr>
<td>R₀₂ₐ</td>
<td>Areal O₂ consumption rate in sediment (mmol m⁻² d⁻¹) where R₀₂ₐ is the vertical integral of volumetric R₀₂ᵥ (Eq. 2.2)</td>
</tr>
<tr>
<td>R₀₂ᵥ</td>
<td>Volumetric O₂ consumption rate in sediment (mmol m⁻³ d⁻¹)</td>
</tr>
<tr>
<td>SWI</td>
<td>Sediment-water interface</td>
</tr>
<tr>
<td>u*</td>
<td>Friction velocity (cm s⁻¹)</td>
</tr>
<tr>
<td>z</td>
<td>Distance above or below SWI (mm)</td>
</tr>
<tr>
<td>zₘₐₓ</td>
<td>Depth of sediment oxic zone (mm)</td>
</tr>
<tr>
<td>δDBL</td>
<td>DBL thickness (mm)</td>
</tr>
<tr>
<td>ε</td>
<td>Dissipation rate of turbulent kinetic energy (W kg⁻¹)</td>
</tr>
<tr>
<td>φ</td>
<td>Porosity (void volume per total sediment volume; dimensionless)</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation (units correspond to parameter of interest)</td>
</tr>
</tbody>
</table>
Table 2.2. Mean estimates of friction velocity (u^*), energy dissipation rate (ε), and intermittency ($\sigma_{\text{int}(\varepsilon)}$) of ε.

<table>
<thead>
<tr>
<th>Profile number<sup>(1)</sup></th>
<th>Time sensors contacted SWI<sup>(1)</sup></th>
<th>Friction velocity, u^* (cm s<sup>-1</sup>)</th>
<th>Energy dissipation rate, ε (W kg<sup>-1</sup>)</th>
<th>ε intermittency, $\sigma_{\text{int}(\varepsilon)}$ (–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>(2)</sup></td>
<td>27 Aug 07 21:14 h</td>
<td>(0.007)</td>
<td>(8.4×10^{-12})</td>
<td>(2.4)</td>
</tr>
<tr>
<td>2</td>
<td>22:05 h</td>
<td>0.067</td>
<td>7.5×10^{-9}</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>22:57 h</td>
<td>0.055</td>
<td>4.0×10^{-9}</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>23:50 h</td>
<td>0.079</td>
<td>1.2×10^{-8}</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>28 Aug 07 00:42 h</td>
<td>0.064</td>
<td>6.5×10^{-9}</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>01:36 h</td>
<td>0.042</td>
<td>1.8×10^{-9}</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>02:27 h</td>
<td>0.024</td>
<td>3.2×10^{-10}</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>03:19 h</td>
<td>0.008</td>
<td>1.3×10^{-11}</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>04:12 h</td>
<td>0.007</td>
<td>7.8×10^{-12}</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>05:05 h</td>
<td>0.022</td>
<td>2.5×10^{-10}</td>
<td>0.8</td>
</tr>
<tr>
<td>11</td>
<td>05:59 h</td>
<td>0.030</td>
<td>6.7×10^{-10}</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>06:53 h</td>
<td>0.049</td>
<td>2.9×10^{-9}</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>07:44 h</td>
<td>0.056</td>
<td>4.2×10^{-9}</td>
<td>0.4</td>
</tr>
<tr>
<td>14</td>
<td>08:37 h</td>
<td>0.040</td>
<td>1.6×10^{-9}</td>
<td>0.3</td>
</tr>
</tbody>
</table>

⁽¹⁾Data are compared by profile number, which represents the time each microsensor profile was obtained during the Alpnach campaign. The time assigned to each profile was the time at which the microsensor encountered the SWI.

⁽²⁾Outlier data for profile 1 placed in parentheses.
Table 2.3. Results of the five analytical methods used for sediment O$_2$ uptake rate (J$_{O2}$) and diffusive boundary layer thickness (δ_{DBL}) calculations.

<table>
<thead>
<tr>
<th>Method</th>
<th>Profile number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct: Measured gradient</td>
<td>δ_{DBL} (mm)</td>
<td>0.6</td>
<td>0.9</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.4</td>
<td>1.9</td>
<td>5.9</td>
<td>6.3</td>
<td>1.4</td>
<td>1.3</td>
<td>2.2</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>J$_{O2}$ (mmol m$^{-2}$ d$^{-1}$)</td>
<td>9.9</td>
<td>8.1</td>
<td>5.1</td>
<td>7.6</td>
<td>7.0</td>
<td>6.5</td>
<td>4.5</td>
<td>1.6</td>
<td>1.2</td>
<td>6.8</td>
<td>7.2</td>
<td>4.0</td>
<td>7.6</td>
<td>5.5</td>
</tr>
<tr>
<td>u:\ Function of friction velocity</td>
<td>δ_{DBL} (mm)</td>
<td>3.0</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>1.2</td>
<td>1.9</td>
<td>4.6</td>
<td>6.7</td>
<td>1.6</td>
<td>1.2</td>
<td>1.5</td>
<td>0.7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J$_{O2}$ (mmol m$^{-2}$ d$^{-1}$)</td>
<td>2.0</td>
<td>9.0</td>
<td>7.6</td>
<td>9.6</td>
<td>8.2</td>
<td>7.8</td>
<td>4.6</td>
<td>2.0</td>
<td>1.2</td>
<td>5.8</td>
<td>8.0</td>
<td>5.7</td>
<td>8.1</td>
<td>6.4</td>
</tr>
<tr>
<td>Curvefit: Best-fit of single curve</td>
<td>δ_{DBL} (mm)</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.3</td>
<td>1.1</td>
<td>2.2</td>
<td>2.2</td>
<td>8.7</td>
<td>11.1</td>
<td>1.6</td>
<td>2.0</td>
<td>1.9</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>J$_{O2}$ (mmol m$^{-2}$ d$^{-1}$)</td>
<td>4.5</td>
<td>6.0</td>
<td>5.6</td>
<td>5.9</td>
<td>6.1</td>
<td>4.1</td>
<td>3.9</td>
<td>1.1</td>
<td>0.7</td>
<td>5.9</td>
<td>4.7</td>
<td>4.5</td>
<td>6.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Zonefit: Fitting multiple zones via PROFILE</td>
<td>δ_{DBL} (mm)</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.7</td>
<td>2.4</td>
<td>9.3</td>
<td>6.0</td>
<td>1.6</td>
<td>1.7</td>
<td>2.1</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>J$_{O2}$ (mmol m$^{-2}$ d$^{-1}$)</td>
<td>5.2</td>
<td>7.1</td>
<td>5.4</td>
<td>6.4</td>
<td>6.1</td>
<td>5.3</td>
<td>3.5</td>
<td>1.0</td>
<td>1.3</td>
<td>5.8</td>
<td>5.6</td>
<td>4.0</td>
<td>6.9</td>
<td>4.4</td>
</tr>
<tr>
<td>Model: DBL estimation via AQUASIM</td>
<td>δ_{DBL} (mm)</td>
<td>1.0</td>
<td>1.8</td>
<td>1.2</td>
<td>1.5</td>
<td>0.9</td>
<td>1.7</td>
<td>2.2</td>
<td>9.7</td>
<td>9.0</td>
<td>2.2</td>
<td>2.0</td>
<td>1.7</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>J$_{O2}$ (mmol m$^{-2}$ d$^{-1}$)</td>
<td>5.9</td>
<td>4.3</td>
<td>5.7</td>
<td>5.4</td>
<td>7.3</td>
<td>5.2</td>
<td>3.9</td>
<td>1.0</td>
<td>0.9</td>
<td>4.3</td>
<td>4.7</td>
<td>5.1</td>
<td>5.9</td>
<td>6.4</td>
</tr>
<tr>
<td>Average of five methods</td>
<td>δ_{DBL} (mm)</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.6</td>
<td>2.1</td>
<td>7.6</td>
<td>7.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.9</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>J$_{O2}$ (mmol m$^{-2}$ d$^{-1}$)</td>
<td>5.5</td>
<td>6.9</td>
<td>5.9</td>
<td>7.0</td>
<td>6.9</td>
<td>5.8</td>
<td>4.1</td>
<td>1.3</td>
<td>1.1</td>
<td>5.7</td>
<td>6.1</td>
<td>4.7</td>
<td>7.0</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Table 2.4. Average J_{O2} and vertically-integrated areal rates of change in the O_2 concentration over time ($\partial C / \partial t_a$), areal sediment O_2 consumption rates (R_{O2a}), and mass of O_2 (M_{O2}) in the sediment.

<table>
<thead>
<tr>
<th>Profile number</th>
<th>J_{O2} (mmol m$^{-2}$ d$^{-1}$)</th>
<th>$\partial C / \partial t_a^{(1,2)}$ (mmol m$^{-2}$ d$^{-1}$)</th>
<th>$R_{O2a}^{(1)}$ (mmol m$^{-2}$ d$^{-1}$)</th>
<th>$M_{O2}^{(1)}$ (μmol m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.5</td>
<td>-0.68</td>
<td>6.2</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>6.9</td>
<td>-0.11</td>
<td>7.0</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>5.9</td>
<td>0.14</td>
<td>5.8</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>7.0</td>
<td>0.16</td>
<td>6.8</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>6.9</td>
<td>-0.02</td>
<td>7.0</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>5.8</td>
<td>-0.42</td>
<td>6.2</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>4.1</td>
<td>-0.44</td>
<td>4.5</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>1.3</td>
<td>-0.25</td>
<td>1.6</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1.1</td>
<td>0.28</td>
<td>0.8</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>5.7</td>
<td>0.31</td>
<td>5.4</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>6.1</td>
<td>0.11</td>
<td>6.0</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>4.7</td>
<td>0.16</td>
<td>4.5</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>7.0</td>
<td>0.17</td>
<td>6.9</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td>0.11</td>
<td>5.3</td>
<td>44</td>
</tr>
<tr>
<td>Average</td>
<td>5.2 ± 0.30</td>
<td>5.3</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

$^{(1)}$ Profile-specific areal values of R_{O2a}, $\partial C / \partial t_a$, and M_{O2} represent the integral over the depth of the sediment oxic zone. $\partial C / \partial t_a$ was evaluated for each profile as follows: the profiles immediately before and after were compared (e.g., profiles 2 and 4 were compared to evaluate profile 3) to calculate the areal rate of change in O_2 ($\partial C / \partial t_a$).

$^{(2)}$ Quasi-steady-state is established by relatively insignificant values of $\partial C / \partial t_a$ (5% of average J_{O2}).
Figure 2.1. The key components of a dissolved oxygen (O₂) profile are defined, illustrating the relationship between seiching, turbulent mixing, and the vertical distribution of O₂ on both sides of the sediment-water interface (SWI; modified from Jørgensen and Revsbech 1985). Water-side components include the bottom boundary layer (BBL), the diffusive boundary layer (of thickness δ_{DBL}), and O₂ concentrations in the BBL (C_{bulk}) and at the SWI (C_{SWI}). On the sediment side, z_{max} is the depth of the sediment oxic zone.
Figure 2.2. (a) The measured longitudinal velocity spectrum φ_{11} (with $k^{5/3}$ slope characteristic in the inertial subrange) is multiplied by $k^{5/3}$ to be independent of wavenumber k. The constant value of $\varphi_{11} \times k^{5/3}$, indicated by the horizontal bar, is used to calculate the mean energy dissipation (ε). (b) Dissipation rates (ε) calculated by inertial dissipation method using longitudinal, planar, and vertical velocity data as measured via acoustic Doppler velocimeter (ADV). Note similarity in longitudinal and transversal ε values.
Figure 2.3. (a) Seiche cycle in Lake Alpnach and location of experiment site during 27 – 28 Aug 07 campaign. Note that water surface is indicated by downward-facing triangles and that scale of seiche is approximate. (b) East and north velocity components at 10 cm above the sediment as measured by the ADV. Bold vertical line marks the current reversal point where seiche-induced motion of the water body changed direction from northeast (NE) to southwest (SW).
Figure 2.4. Temperature and O₂ data obtained on 27 – 28 Aug 07. (a) Temperature (T) and O₂ time series as measured using a thermistor logger at 8 cm above sediment. (b) Temperature contour plot showing data from 30 cm to 200 cm above sediment as measured via thermistors. (c and d) Temperature and O₂ contour plots showing data from -0.25 cm (in sediment) up to 1 cm (in water) as measured via micro-profiler microsensors (14 profiles throughout 12-h measurement period).
Figure 2.5. O_2 microprofiles obtained at approximately 50-min intervals relative to the ADV velocity time series. O_2 profiles are divided into three panels with corresponding section of velocity time series plotted above each O_2 profile panel (a – c). (a) Initially, current velocity is increasing and the O_2 profiles are observed to shift to the right toward more oxic conditions in both the water and the sediment with a corresponding decrease in δ_{DBL} and increase in z_{max}. (b) As velocity decreases, δ_{DBL} is shown to increase and z_{max} to decrease as the profiles shift to the left toward anoxic conditions in the sediment and overlying water. (c) As velocities return to initial levels, the O_2 profiles are observed to shift back to the right toward a more oxic distribution similar to that observed in (a).
Figure 2.6. Correlation between ε and sediment O$_2$ uptake rate (J_{O_2}). The linear trendline serves as a guide for the reader’s eye and does not imply an explicit relationship between J_{O_2} and ε. Because data for profile 1 are outliers, as discussed in the text, these data are placed in parentheses.
Figure 2.7. Time series of current velocity, turbulence (as defined by ε), and δ_{DBL} showing close correlation between all three parameters with only a slight phase lag (on the order of minutes) between velocity and ε. Similarity in δ_{DBL} estimates obtained from different analytical methods is indicated by low standard deviations for δ_{DBL}. The DBL becomes undefined during the period of negligible turbulence and thus corresponding δ_{DBL} data (profiles 8 and 9) are placed in parentheses with dashed-line connectors to emphasize that these data are included solely as a relative comparison. Note reversed axis for δ_{DBL}.
Figure 2.8. PROFILE model results defining zones of varying volumetric sediment O$_2$ consumption rates (R$_{O2v}$) for periods of active and inactive turbulence as characterized by ε in (a). During elevated turbulence (b and d), O$_2$ consumption is characterized by two zones. However, a single zone defines low consumption during the period of negligible turbulence (c).
Chapter 3 – Evaluating oxygen fluxes from both sides of the sediment-water interface

Bryant, Lee D.a, Daniel F. McGinnisb, Claudia Lorraic,d, Andreas Brandc,1, John C. Littlea, Alfred Wüestc,d

aCivil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA 24061.
bIFM-GEOMAR, Leibniz Institute of Marine Sciences, RD2 Marine Biogeochemistry, Kiel, Germany D-24148.
cEawag (Swiss Federal Institute of Aquatic Science and Technology), Surface Waters – Research and Management, Kastanienbaum, Switzerland CH-6047.
dInstitute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Switzerland CH-8092.

Present address:
1Civil and Environmental Engineering, University of California, Berkeley, USA 94701.

Submitted in February 2010 to Limnology and Oceanography: Methods

3.1 Abstract

Sediment-water fluxes are influenced by both hydrodynamics and biogeochemical uptake processes within the sediment. However, fluxes at the sediment-water interface (SWI) are almost always analyzed from either a water- or sediment-side perspective. This study expands on previous work by comparing water-side (hydrodynamics and resulting diffusive boundary layer thickness δ_{DBL}) and sediment-side (oxygen consumption and resulting sediment oxic zone) approaches for evaluating sediment oxygen uptake rate (J_{O2}). Dissolved oxygen microprofile and current velocity data were analyzed using five common methods to estimate J_{O2} and δ_{DBL} and to assess the robustness of the approaches. Comparable values for both J_{O2} and δ_{DBL} were obtained (agreement within 20%) and turbulence-induced variations in these parameters were uniformly characterized with all five methods. J_{O2} estimates based on water-side data were consistently higher (+1.8 mmol m-2 d-1 or 25% on average) and δ_{DBL} estimates correspondingly lower (-0.4 mm or 35% on average) than those obtained using sediment-side data. This deviation may be attributed to artifacts of the methods themselves, assumptions made on sediment properties, and/or local variability in sediment oxygen uptake processes. Regardless, our overall results show clearly that calculations of J_{O2} and δ_{DBL} are not strongly dependent on...
the method chosen for analysis. Benefits and limitations of each analytical method used are discussed.

3.2 Introduction

Problems related to low dissolved oxygen (O$_2$) levels in aquatic ecosystems are growing on a global scale (Jankowski et al. 2006; Zimmerman et al. 2008). O$_2$ depletion in stratified waters is largely controlled by sediment O$_2$ uptake, particularly in organic-rich environments (Higashino et al. 2004). Flux of O$_2$ across the sediment-water interface (SWI) may be governed by near-sediment hydrodynamic processes or by O$_2$ consumption within the sediment (Gundersen and Jørgensen 1990; Jørgensen and Boudreau 2001; Glud et al. 2007). Turbulence in the bottom boundary layer (BBL) controls the thickness (δ_{DBL}) of the diffusive boundary layer (DBL), the mm-scale region immediately above the sediment that typically regulates mass transport of O$_2$ to the SWI in non-advective systems (Jørgensen and Revsbech 1985; Lorke et al. 2003; Bryant et al. 2010; Ch. 2). Within the sediment, the distribution of O$_2$ is determined by a balance between the amount of O$_2$ supplied via diffusion and the amount of O$_2$ used by biogeochemical oxidation processes (Berg et al. 2003). Quantifying the sediment O$_2$ uptake rate (J_{O2}) is fundamental in characterizing the availability of O$_2$ and corresponding ecological conditions in an aquatic system.

A wealth of literature exists on the various methods used for estimating J_{O2} (Jørgensen and Revsbech 1985; Nishihara and Ackerman 2007; Glud 2008). J_{O2} is typically evaluated from either a water- or sediment-side perspective (O’Connor et al. 2009). Considerable research has focused on hydrodynamic controls of δ_{DBL} and corresponding O$_2$ transport to the sediment (Boudreau 2001; Lorke et al. 2003; Hondzo et al. 2005). Water-side, δ_{DBL}-based approaches are simpler because they do not account for O$_2$ consumption within the sediment and thus only diffusive mass transfer is considered (Glud 2008; O’Connor and Harvey 2008). However, both rapid turbulence-driven variations in δ_{DBL} and the short residence time of O$_2$ in the DBL cause δ_{DBL} to be a difficult parameter to resolve (Røy et al. 2004; O’Connor and Hondzo 2008). Furthermore, microsensor measurements of the DBL can disrupt boundary layer flow, leading to compression of the DBL and thus changing δ_{DBL} (Glud et al. 1994).
While water-side problems are avoided by using sediment-side methods, there are additional complexities related to O$_2$ transport and consumption processes within the sediment (Glud 2008). Sediment-side data are often more difficult to interpret due to natural sediment heterogeneity (e.g., porosity and grain size; Maerki et al. 2004). Also, while lateral advection and mixing maintains a fairly uniform O$_2$ concentration in the BBL, variations in sediment O$_2$ levels are much more site-specific due to sediment heterogeneity (O’Connor and Hondzo 2008). Sediment O$_2$ consumption processes can vary either spatially (e.g., increased reactive surface area due to microtopography; Røy et al. 2002) or occur non-locally (e.g., small-scale variation in benthic communities; Rabouille et al. 2003; Glud et al. 2009). Despite these complications, porewater O$_2$ profile data can reveal important information about the sediment O$_2$ consumption rate (R$_{O2}$), the extent of the sediment oxic zone (Epping and Helder 1997; Berg et al. 1998; Bryant et al. 2010; Ch. 2), and solute dynamics (Berg et al. 2007a; Glud et al. 2007; Brand et al. 2009).

While numerous approaches are used for assessing J$_{O2}$, no single method has been shown to be optimal and further evaluation of how the various methods compare is needed (Nishihara and Ackerman 2007; Glud 2008). Furthermore, because sediment O$_2$ uptake can be affected by processes on both sides of the SWI, evaluating J$_{O2}$ from a one-sided perspective could result in different and biased interpretations of J$_{O2}$ and R$_{O2}$. Using in situ velocity and O$_2$ microprofile data obtained during a companion study on the dynamic nature of J$_{O2}$ (Bryant et al. 2010; Ch. 2), the present work evaluates the robustness of several established methods for flux estimation based on both water- and sediment-side approaches. Some of the methods assessed have thus far been applied primarily in theoretical or laboratory-based studies (O’Connor and Hondzo 2008; Brand et al. 2009). The advantages and limitations of the different methods are discussed with respect to analytical approach and applicability. To our knowledge, while estimations of J$_{O2}$ based on (1) hydrodynamics, (2) the vertical distribution of O$_2$ above the sediment, and (3) sediment porewater concentration data have been well justified in previous work (Jørgensen and Revsbech 1985; Rasmussen and Jørgensen 1992; Lorke et al. 2003), this is one of the first studies that incorporates all three of these components into a comprehensive evaluation of J$_{O2}$ and δ_{DBL} using in situ data.
3.3 Materials and procedures

3.3.1 Study site and in-situ instrumentation – During a 12-h field campaign in Lake Alpnach, Switzerland on 27 to 28 August 2007, high-resolution SWI microprofile data and velocity data were collected at a depth of 22 m to determine J_{O_2} and δ_{DBL}. Basic information on the experimental set-up used is described here, with additional details included in the companion paper (Bryant et al. 2010; Ch. 2). Frequently-used acronyms and notations are defined in Table 3.1.

High-resolution O_2 profiles were measured across the SWI using a micro-profiler (MP4, Unisense A/S) equipped with a Clark-type O_2 microsensor (100-μm diameter and depth resolution; 90% response time in < 8 s). Profiles were measured continuously (profile duration of ~50 min) at the following resolution: 10-mm increments from 10 cm to 1 cm above the SWI, 1-mm increments from 1 cm to 0.5 cm above the SWI, 0.1-mm increments from 0.5 cm above to 0.5 cm below the SWI. Following a pause between measurements to establish equilibrium, 10 data points were collected at a rate of 1 Hz at each depth (no trend in variation of the data set was evident, confirming that data aliasing did not occur). Fourteen O_2 profiles were obtained during our 12-h campaign and the O_2 profile number (1 – 14) is used for comparison of results. An O_2 logger (TDO-2050; RBR Ltd.) was mounted on the micro-profiler to obtain measurements of 1 Hz at 8 cm above the sediment for calibration of the O_2 microsensor. The TDO-2050 has a 90% response time of < 10 s, a measurement range of 0% to 150% O_2 saturation, resolution of ±1% and accuracy of ±2% O_2 saturation. TDO-2050 data were calibrated via Winkler titration of water samples obtained from the same depth with a Niskin bottle.

Water velocity time series corresponding to each O_2 profile were collected continuously at a single point using an acoustic Doppler velocimeter (ADV; Vector, Nortek). The ADV, positioned at 10 cm above the SWI via tripod, continuously measured three-dimensional velocity data at 32 Hz with an accuracy of 0.5% of the measured value or ±0.1 cm s$^{-1}$. ADV velocity data were used to analyze the current structure and to characterize turbulence and friction velocity within the law-of-the-wall layer.

3.3.2 Turbulence analyses – Turbulence in the BBL was defined by the rate of dissipation of turbulent kinetic energy ε (W kg$^{-1}$) using the inertial dissipation method (Grant et al. 1962).
Additional details on how turbulence was analyzed may be found in Bryant et al. (2010; Ch. 2). Average ε values were assessed based on the duration of each O$_2$ profile and hence ε estimates represent a time span of ~50 min. Because turbulence is highly intermittent, dissipation is averaged by assuming lognormal distribution. Standard deviations of ln(ε), or the intermittency of ε, were evaluated using the method defined by Baker and Gibson (1987).

3.3.3 **Friction velocity analyses** – Friction velocity (u_*) quantifies the frictional stress of BBL currents on the sediment. Law-of-the-wall theory and estimated mean ε values were used to calculate u_* at a height (h) of 10 cm above the sediment (Lorke et al. 2003):

$$u_* = \sqrt{\frac{\varepsilon \kappa h}{2}} \quad [\text{m s}^{-1}] \quad (3.1)$$

where κ (von Karman constant) is 0.41.

3.3.4 **Methods for J_{O2} analyses** – Five different methods (*direct*, u_*, *curvefit*, *zonefit*, and *model*; Table 3.1) were used to analyze J_{O2} and δ_{DBL} from both sides of the SWI (Fig. 3.1). Water-side O$_2$ microsensor data were used for the *direct method* and the u_* method, which also incorporates ADV velocity data. Sediment-side O$_2$ microsensor data were analyzed with polynomial curve equations (*curvefit method*) and/or numerical procedures (*zonefit and model methods*). Key components of the vertical O$_2$ distribution used in these calculations are shown schematically in Fig. 3.1a.

Each method yielded results for either J_{O2} or δ_{DBL} and then the corresponding parameter (δ_{DBL} or J_{O2}, respectively) was evaluated using Fick’s first law of diffusion (Rasmussen and Jørgensen 1992; Lavery 2001; Higashino et al. 2004):

$$J_{O2} = -\varphi D_s \frac{\partial C}{\partial z} = -D \frac{\partial C}{\partial z} = D \frac{C_{\text{bulk}} - C_{SWI}}{\delta_{DBL}} \quad [\text{mmol m}^{-2} \text{ d}^{-1}] \quad (3.2)$$

where φ is sediment porosity (m3 voids m$^{-3}$ total volume), D_s is the diffusion coefficient for O$_2$ in sediment (m2 s$^{-1}$), D is the diffusion coefficient for O$_2$ in water (m2 s$^{-1}$), $\partial C/\partial z$ is the linear O$_2$
concentration gradient in the DBL immediately above or below the SWI (μmol m⁻⁴), \(C_{\text{bulk}} \) is the O₂ concentration in the bulk BBL (μmol L⁻¹), and \(C_{\text{SWI}} \) is the O₂ concentration at the SWI (μmol L⁻¹), as shown in Fig. 3.1a. Diffusive transport is hence defined in the sediment by the second term in Eq. 3.2 and in the water by the third and fourth terms. Values for \(D \) were based on \(D = 1.97 \times 10^{-9} \text{ m}^2 \text{ s}^{-1} \) at 20°C and correcting for temperature using the Stokes-Einstein relationship (Li and Gregory 1974; Arega and Lee 2005). \(D_s \) was defined as \(D_s = \phi D \) (multiplying by \(\phi \) provides a simple correction for tortuosity that ignores other possible higher-order corrections; Berg et al. 1998; Glud 2008). This simple tortuosity correction thus increases the influence of \(\phi \) on diffusive transport in the sediment (\(\phi D_s = \phi^2 D \) in the second term of Eq. 3.2) as compared to the usual term which only corrects for \(\phi \) (e.g., using \(\phi D \) rather than \(\phi D_s = \phi^2 D \) in the second term of Eq. 3.2; Higashino et al. 2004; Bryant et al. 2010; Ch. 2). The temporal change in O₂ concentration (\(\partial C/\partial t \)) was evaluated for our series of 14 O₂ profiles by comparing profiles immediately before and after one another and calculating the rate of change in O₂ at each depth; \(\partial C/\partial t \) was found to be on average ~5% of \(J_{O_2} \) (Bryant et al. 2010; Ch. 2), thus establishing that our profiles were at quasi-steady state.

In the absence of a video camera, SWI estimation was based on both visual interpretation of each profile (identifying linear DBL regions and profile kinks related to \(\phi \) differences between the water and the sediment; Røy et al. 2004) and assessment of O₂ standard deviations (variation should decrease approaching the SWI due to reduced turbulence fluctuations; Müller et al. 2002; Brand et al. 2007). To account for sediment \(\phi \) when Eq. 3.2 was applied to porewater for the sediment-side methods, \(\phi \) measurements were performed on sediment cores taken from our experiment site (following protocol per Dalsgaard et al. 2000). Supporting \(\phi \) predictions were also obtained using the numerical model PROFILE (Berg et al. 1998) to analyze \(\phi \) at a greater depth resolution than possible with core tests (Bryant et al. 2010; Ch. 2). From these evaluations, average \(\phi \) values of 0.95 in the upper 1 mm and 0.90 at > 1 mm below the SWI were obtained and subsequently used in \(J_{O_2} \) calculations and/or as model input parameters.

\(J_{O_2} \) estimates obtained using Fick’s law (Eq. 3.2) describe diffusive, not total, O₂ uptake. Thus, influences on non-diffusive O₂ uptake, such as variations in sediment topography, advective porewater flow (typical of porous sediment), and irrigation, are not taken into account (Berg et al. 1998; Jørgensen 2001). With the exception of the zonefit method (which evaluates \(J_{O_2} \) as a function of \(R_{O_2} \)), all methods used in this study are based on estimating \(J_{O_2} \) directly from
Eq. 3.2 and thus characterize diffusive uptake. While non-diffusive O₂ uptake processes could have been incorporated into some of our analyses, these effects were neglected for the sake of comparison between methods.

3.3.4.1 Direct method – J_{O2} was evaluated directly from the linear slope of the DBL, as measured via the O₂ microsensor (Fig. 3.1b). The DBL slope ∂C/∂z was incorporated into Eq. 3.2 to obtain J_{O2} and corresponding δ_{DBL}. The right-hand term in Eq. 3.2 quantifies δ_{DBL} in terms of an ‘effective’ DBL (Jørgensen and Revsbech 1985), which is obtained by extrapolating ∂C/∂z at the SWI to C_{bulk} in the water column. This conceptual definition of the DBL corresponds to the extension of the ‘true’ DBL (based solely on the actual linear region) from the laminar region above the SWI to the mixed bulk region.

3.3.4.2 u* method – Because accurate microsensor measurements of the DBL are challenging, an alternative method has been developed that estimates δ_{DBL} as a function of hydrodynamics (Hondzo et al. 2005; O’Connor and Hondzo 2008). This method uses a simplified dimensionless power law for the universal scaling of the vertical O₂ distribution in the bulk water to estimate δ_{DBL} (Fig. 3.1c). Dimensionless power law scaling was applied to friction velocity (u*) data derived from ADV velocity series to solve for a non-dimensional DBL thickness (δ_{DBL}^+; Hondzo et al. 2005):

\[
C^+ = \frac{z^+}{\delta_{DBL}^+} \frac{\nu}{D} + BSc_\text{i} \left(\frac{1}{\delta_{DBL}^+} - \frac{1}{z^{+2}} \right) \quad \text{for } z^+ < \delta_{DBL}^+
\]

\[
C^+ = \frac{z^+}{\delta_{DBL}^+} \frac{\nu}{D} + BSc_\text{i} \left(\frac{1}{\delta_{DBL}^+} - \frac{1}{\nu} \right) \quad \text{for } z^+ \geq \delta_{DBL}^+
\]

where C⁺, z⁺, and δ_{DBL}⁺ are non-dimensional parameters for concentration, depth, and estimated δ_{DBL} from the power law, respectively. \(\nu \) is kinematic viscosity (corrected for temperature), B is an integration constant, and Sc_i is the turbulent Schmidt number. We found the product BSc_i to have a functional dependence on the Reynolds number (Re = u* \(\delta_{DBL}^+ \nu^{-1} \)) across the series of 14 profiles during our relatively low in situ turbulence conditions. BSc_i and the profile-specific δ_{DBL}⁺ were used to fit the power law to water-side O₂ profile data immediately above the SWI and
evaluate the point at which the two curves defining $C^+(z^+ < \delta_{\text{DBL}}^+ \text{ and } z^+ \geq \delta_{\text{DBL}}^+)$, as defined in
Eq. 3.3) converge. Once δ_{DBL}^+ was estimated (Fig. 3.1c), it was used to obtain the actual DBL
thickness (δ_{DBL}):

$$\delta_{\text{DBL}} = \frac{v \delta_{\text{DBL}}^+}{u_*} \quad [\text{m}] \quad (3.4)$$

The corresponding J_{O_2} was then calculated using the right-hand term in Eq. 3.2.

3.3.4.3 Curvefit method – This method is based on characterizing the sediment oxic zone
with the polynomial $C(z)$ that best fits the profile curve (Fig. 3.1d) immediately below the SWI
(Urban et al. 1997; Glud 2008). A majority of our data were described most accurately by third-
order polynomials (profile 6 required a fourth-order equation). Taking the first derivative of
$C(z)$, which defines O_2 as a function of depth (z), and evaluating at the sediment surface ($z_{SWI} = 0$)
yields a constant $\partial C/\partial z$, which can then be incorporated into Eq. 3.2 to solve for J_{O_2} and δ_{DBL}.

3.3.4.4 Zonefit method – Sediment porewater O_2 data were analyzed using PROFILE, a
one-dimensional, numerical procedure for biogeochemical interpretation of sediment porewater
profiles (Berg et al. 1998). PROFILE uses a numerical analysis based on zero-order kinetics that
defines zones of constant volumetric O_2 consumption ($R_{O_{2v}}$; Table 3.1) to best characterize a
sediment O_2 profile (Fig. 3.1e). At steady-state, $R_{O_{2v}}$ may be defined by the derivative of Eq. 3.2
(Rasmussen and Jørgensen 1992; Glud 2008):

$$R_{O_{2v}} = \frac{\partial}{\partial z} \left(\varphi D s \frac{\partial C}{\partial z} \right) \quad [\text{mmol m}^{-3} \text{ d}^{-1}] \quad (3.5)$$

The PROFILE algorithm solves Eq. 3.5 numerically and reduces the number of zones necessary
for obtaining an optimal fit using statistical F-testing. From this statistical analysis, the simplest
O_2 consumption-production profile is selected that best models the porewater profile data. We
found that the full set of 14 profiles was typically characterized by one or two consumption
zones, as also shown by Brand et al. (2008). Data from our 14 O_2 profiles were used as input for
the numerical procedure. Boundary conditions were defined by O$_2$ flux and concentration evaluated at the bottom of the profile ($J_{O2} = 0$ mmol m$^{-2}$ d$^{-1}$ and $C = 0$ μmol L$^{-1}$, respectively). Parameters used for the model include D, D$_s$, and ϕ as defined above. Irrigation and bioturbation effects were assumed negligible.

Balancing O$_2$ transport and consumption results in

$$J_{O2} = \int_0^{z_{max}} R_{O2v} \, dz + \int_0^{z_{max}} \frac{\partial C}{\partial t} \, dz \quad [\text{mmol m}^{-2} \text{ d}^{-1}] \quad (3.6)$$

where R_{O2v} (mmol m$^{-3}$ d$^{-1}$) and the change in O$_2$ over time ($\partial C/\partial t$; mmol m$^{-3}$ d$^{-1}$) are integrated over the sediment profile depth to z_{max} (designated as the depth where O$_2$ drops to < 3 μmol L$^{-1}$). Depth-integrated values of R_{O2v} and $\partial C/\partial t$ are defined by areal parameters R_{O2a} and $\partial C/\partial t_a$, respectively (mmol m$^{-2}$ d$^{-1}$; Table 3.1), to allow for direct comparison with J_{O2}. J_{O2} values based on PROFILE results were incorporated into Eq. 3.2 to obtain corresponding δ_{DBL}.

3.3.4.5 Model method – We used AQUASIM (Reichert 1994), an aquatic system simulation and data analysis software, to fit measured O$_2$ porewater data to the transport-reaction equation

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(\phi D_s \frac{\partial C}{\partial z} \right) - \mu \frac{C}{K_{O2} + C} \quad [\text{mmol m}^{-3} \text{ d}^{-1}] \quad (3.7)$$

which defines diffusion and consumption by Monod kinetics, where μ is the maximum oxidation rate (mmol m$^{-3}$ d$^{-1}$) and K_{O2} is the half-saturation constant (μmol L$^{-1}$). The second term on the right-hand side of Eq. 3.7 thus characterizes R_{O2v} in terms of Monod kinetics. The Monod parameters were obtained using a diffusion-reaction model developed with the sediment module of AQUASIM version 2.1e (Reichert 1994; Brand et al. 2009), which was adapted to include tortuosity effects via D$_s$. Monod kinetic data were used to predict δ_{DBL} required to model sediment O$_2$ profile data (Fig. 3.1f), allowing us to assess an alternative kinetic approach and to model δ_{DBL} directly from sediment-side data (the zonefit method is based on zero-order O$_2$ consumption and does not predict δ_{DBL}).
To solve the partial differential in Eq. 3.7 numerically, the vertical derivatives were discretized using a conservative finite difference scheme (LeVeque 1992). These spatially-discretized equations were then integrated over time using the differential/algebraic system solver (DASSL; Petzold 1983) algorithm and the backward-differencing, variable-step, and variable-order GEAR technique (Gear 1971). Routines for parameter estimation, based on the secant method of Ralston and Jennrich (1987), minimized the sum of weighted squares of the deviations between measured data and model results (Reichert 1994).

A single set of Monod parameters ($\mu = 3620 \text{ mmol m}^{-3} \text{d}^{-1}$ and $K_{O_2} = 8.0 \mu\text{mol L}^{-1}$) was found to characterize steady-state O$_2$ consumption for the series of 14 O$_2$ profiles with C$_{SWI}$ as the only variable. These Monod parameters were subsequently used in a second model run with C$_{bulk}$ as the upper boundary condition and δ_{DBL} as the sole fitting parameter to reproduce our sediment O$_2$ data, thus enabling us to predict δ_{DBL} for the full set of profiles. J_{O_2} was estimated by incorporating the AQUASIM-modeled δ_{DBL} into Eq. 3.2.

3.4 Assessment

3.4.1 Dynamic forcing of O$_2$ distribution

Turbulence-induced variation in our O$_2$ profile data allowed us to assess the performance and applicability of the different analytical methods for J_{O_2} over a range of turbulence levels. The vertical distribution of O$_2$ on both sides of the SWI (as characterized by δ_{DBL} and z_{max}, respectively) and J_{O_2} were found to be strongly influenced by BBL turbulence during the 12-h measurement period (Fig. 3.2; Bryant et al. 2010; Ch. 2). J_{O_2} and δ_{DBL} values shown in Fig. 3.2 are based on average results of the five methods. Quantified values presented in this study differ slightly (< 5% on average) from those in Bryant et al. (2010; Ch. 2) due to a difference in how sediment tortuosity was accounted for (D_s; discussed below); however, overall results were not affected. J_{O_2} ranged from $6.8 \pm 1.9 \text{ mmol m}^{-2} \text{d}^{-1}$ during peak turbulence ($\varepsilon = 1.2 \times 10^{-8} \text{ W kg}^{-1}$) to $1.0 \pm 0.3 \text{ mmol m}^{-2} \text{d}^{-1}$ during negligible turbulence ($\varepsilon = 7.8 \times 10^{-12} \text{ W kg}^{-1}$), as shown in Fig. 3.2a. Corresponding variation in u^* is also shown. The DBL was suppressed to a minimum δ_{DBL} of $1.1 \pm 0.1 \text{ mm}$ and z_{max} increased to 2.2 mm during peak turbulence (Fig. 3.2b). When turbulence levels dropped, z_{max} decreased to 0.3 mm and δ_{DBL} increased to the point of becoming technically undefined (Gantzer and Stefan 2003; Røy et al. 2004). However, a conceptual δ_{DBL} was quantified for the sake of comparison during this
quiescent period and a nominal maximum δ_{DBL} of 8.0 ± 2.4 mm was obtained. Average δ_{DBL} and J_{O2} (characterizing the full O_2 profile set) used for comparative assessment of methods were based on data obtained during active turbulence when a defined δ_{DBL} was maintained (excluding profiles 8 and 9).

3.4.2 Comparison of results – We found J_{O2} and δ_{DBL} estimates from the different methods to be comparable within 20% on average relative to overall change (85%) throughout the experiment (Fig. 3.3). The range in J_{O2} and δ_{DBL} values obtained per profile from the different methods (e.g., the five individual J_{O2} values for profile 5) is relatively small compared to overall temporal variation in averages (e.g., the mean J_{O2} values for profiles 5 and 7). Furthermore, the trend in turbulence-induced changes in J_{O2} (and corresponding δ_{DBL}) is well preserved by all five methods (Fig. 3.2, 3.3). Although there are acknowledged conceptual and methodological difficulties with quantifying δ_{DBL} during quiescent conditions, the methods performed reasonably well during the period of negligible turbulence, with no significant increase in variation relative to average δ_{DBL} (or J_{O2}).

Estimates of J_{O2} obtained with water-side ($direct$ and $u*$) methods were consistently higher (and δ_{DBL} estimates correspondingly lower) than those obtained via sediment-side ($curvefit$, $zonefit$, and $model$) methods (Fig. 3.3). J_{O2} based on water-side data were on average 25% higher than estimates based on sediment-side data while δ_{DBL} values were on average 35% lower (relative to water-side J_{O2} and δ_{DBL}; differences of $+1.8 \text{ mmol m}^{-2} \text{ d}^{-1}$ and -0.4 mm, respectively) during active turbulence. Potential reasons for deviation between water- and sediment-side results are discussed below.

In order to measure the statistical range of results from the five methods, standard deviations (σ) were calculated assuming a normal distribution. Data for $\sigma_{J_{O2}}$ and $\sigma_{\delta_{DBL}}$ are shown in Fig. 3.2. Standard deviations remained relatively low although variation was observed at certain points during the campaign. During periods of inactive turbulence, increasing δ_{DBL} and decreasing ε lead to greater uncertainty and subsequent increases in σ and ε intermittency. While increased variability in δ_{DBL} and ε was observed during the quiescent period, this was most likely an effect of analysis rather than an indication of poor data quality. Increased variation in J_{O2}, δ_{DBL}, and ε estimates for profile 1 was attributed to equipment settling (Bryant et al. 2010; Ch. 2) and hence these data were considered outliers.
3.4.3 Evaluation of each method – In general, each method could be applied to the full profile set for estimations of J_{O2} and δ_{DBL}. Data were more difficult to analyze during periods of negligible turbulence (profiles 8 and 9) due to the disintegration of a measurable DBL (direct method), increased uncertainty in u^* estimates (u^* method), and the breakdown of curvature of sediment porewater O_2 profiles (curvefit, zonefit, and model methods). Furthermore, as with all analytical approaches, each of the methods was found to have both benefits and limitations that had to be considered during analysis and/or assessment. Unless otherwise noted, method results are compared using percent difference calculated with respect to average J_{O2} or δ_{DBL}.

3.4.3.1 Direct method – This method is the most traditional and straight-forward (Jørgensen and Revsbech 1985). However, while the O_2 gradient $\partial C/\partial z$ is relatively simple to measure for the quantification of J_{O2} (Eq. 3.2), estimating the actual δ_{DBL} directly from O_2 profiles is more problematic due to rapid changes in δ_{DBL} (Røy et al. 2004). The true endpoint of the linear $\partial C/\partial z$ gradient in the DBL is also often undefined. Jørgensen and Revsbech (1985) addressed this issue by establishing the effective DBL, as characterized in Eq. 3.2 for the evaluation of δ_{DBL}. Due to the disintegration of the intersection point between the linear DBL region and the constant bulk region in many of our O_2 profiles (observed in profile 14, Fig. 3.1b), we were unable to precisely capture the true DBL because of turbulence-induced variations in the C_{bulk} endpoint during the ~50-min period required to measure a full profile. Estimating the true δ_{DBL} visually from the strictly linear region of our measured O_2 profiles yielded values 71% less than average δ_{DBL} results (not shown).

While the effective δ_{DBL} approach has been shown to overestimate δ_{DBL} (Nishihara and Ackerman 2007; O’Connor et al. 2009), direct method δ_{DBL} was typically slightly lower (11% on average) than mean δ_{DBL} (Fig. 3.3). Our results are in agreement with those obtained by Jørgensen (2001), who found effective δ_{DBL} to be similar to δ_{DBL} estimated as a function of hydrodynamics using alabaster plate measurements. While the direct method was relatively easy to apply to our O_2 profiles with comparable results, Nishihara and Ackerman (2007) have suggested a similar but alternate approach using a hyperbolic tangent (rather than a straight line) to define $\partial C/\partial z$, which may be optimal for profiles exhibiting nonlinearity in the DBL.
3.4.3.2 *u*-method – While the other four methods are based purely on O₂ microsensor data, the *u*-method is unique in that it incorporates water column hydrodynamics (as characterized by u*) into the assessment of δ_{DBL}. Estimations of δ_{DBL} from the *u*-method are based on both O₂ microsensor data and ADV velocity data (used to assess u*), thus allowing for a more rigorous evaluation of mean δ_{DBL} and J_{O₂}. The *u*-method was shown by Hondzo et al. (2005) to predict δ_{DBL} values ~30% lower than the effective δ_{DBL} (i.e., direct method). Similarly, our u*-based δ_{DBL} estimates were consistently lower than direct method estimates (though within ±14%; relative to direct method; Fig. 3.3) and 23% less than average δ_{DBL}.

As previously defined, the *u*-method estimates δ_{DBL} as a function of the fitting parameter δ⁺_{DBL} and Reynolds-number-dependent BSc_t using power law scaling of water-side O₂ data. While the power law easily fit most of our data (e.g., profile 14 in Fig. 3.1c and profile 3 in Fig. 3.4a), the fit was less than ideal for several profiles that had increased scatter in bulk water O₂ (e.g., profile 11, Fig. 3.4b). Because the fits were affected by both δ⁺_{DBL} and BSc_t, in several cases the fit was not particularly sensitive to δ⁺_{DBL}. These cases were unsystematic and the resulting combinations varied only slightly from one another, with δ_{DBL} estimations differing by up to ±0.1 mm (<10% of average δ_{DBL} during active turbulence). For these situations, the larger, more conservative value of δ_{DBL} was chosen. Nonetheless, the *u*-method provided consistent approximations of δ_{DBL}.

Although J_{O₂} and/or δ_{DBL} are commonly assessed as a function of current velocity or u* data in laboratory studies (Mackenthun and Stefan 1998; Røy et al. 2004; Hondzo et al. 2005), our study is one of the few that have evaluated J_{O₂} and δ_{DBL} as a function of turbulence based on in situ current velocity. It is acknowledged that velocity-based approaches may not always be appropriate in low-energy systems (e.g., periodically-forced lakes and reservoirs) due to the fact that turbulence, rather than velocity, controls δ_{DBL} in these environments (Lorke et al. 2003). During periods of inactive turbulence, law-of-the-wall theory does not apply (Lorke et al. 2002) and u* is conceptually not defined. The *u*-method may not be as applicable during these periods. Variation between u*-based estimates and the other methods was not observed to increase during the period of inactive turbulence (profiles 8 and 9, Fig. 3.3) however, indicating that the *u*-method performed adequately even under low-ε conditions.

To further evaluate the validity of estimating δ_{DBL} as a function of in-situ velocity during low turbulence, values of u*-based δ_{DBL} and average δ_{DBL} were compared to the Batchelor length.
scale (LB) for O2. This comparison also allowed us to test the robustness of our other microsensor-based δDBL estimates using an independent approach. LB characterizes the minimum length scale of concentration where molecular diffusion begins to reduce concentration gradients (Lorke et al. 2003). Elevated turbulence (ε) sustains concentration fluctuations at a smaller scale, which parallels δDBL behavior. LB may hence be used as an alternative method of estimating δDBL as a function of ε, as developed by Hearn and Robson (2000):

\[L_B = 2\pi \left(\frac{\nu D^2}{\epsilon} \right)^{\frac{1}{4}} \quad [m] \]

While LB was defined conceptually for open flow rather than for a boundary layer, Lorke et al. (2003) show agreement between LB and δDBL, despite a substantial spatial gap (~1 m) between their points of measurement for ε and O2. Taking into account the much smaller spatial gap (~0.1 m) between our measurements, the strong correlation observed in Fig. 3.5 further validates δDBL scaling based on LB.

Because both LB and u* are a function of ε, we specifically evaluated the relationship between LB and u* method results for δDBL. We also compared LB to average δDBL (both including all methods and excluding u* method to isolate the influence of u* results). As shown in Fig. 3.5, all three estimates of δDBL correlate well with LB (R^2 = 0.95 to 0.96). O’Connor and Hondzo (2009) observed similarity between LB and u*-based δDBL as well, while δDBL based on O2 profile data was overestimated in comparison. In contrast, we observed a strong relationship between LB and both δDBL averages (Fig. 3.5). Our δDBL estimates based on u* and purely on O2 profile data were thus supported by LB results.

3.4.3.3 Curvefit method – Mean values of JO2 and δDBL based on curvefit results were within ~10% of the average (Fig. 3.3). Fitting curves to porewater profiles has been used effectively to mathematically describe kinetic rates of O2 consumption and corresponding O2 fluxes in several studies (Nielsen et al. 1990). Ideally, derivatives of the best-fitting curve equations can be used to evaluate JO2 and RO2v (Rasmussen and Jørgensen 1992). Zero-order kinetics are characterized by second-order polynomials and first-order kinetics by exponential equations (Bouldin 1968). Third-order polynomials, though, were found to best fit a majority of
the sediment O₂ profiles in our data set. It was also difficult to fit a single curve throughout the full depth of the oxic zone for any of our profiles. Therefore, emphasis was placed on precisely fitting the region of the curve immediately at the SWI and incorporating the derivative of this curve into Eq. 3.2. The fact that our data could not be defined by a single second-order polynomial indicates that consumption rates were dependent on depth, which was further explored using multiple zero-order consumption zones (zonefit method) and Monod kinetics (model method).

3.4.3.4 Zonefit method – The zonefit method yielded mean J₀₂ and δDBL estimates that were 5% lower and 2% higher, respectively, than average values (Fig. 3.3). The approach used for this method, based on splining multiple second-order polynomials together to best fit a sediment O₂ profile, is advantageous because it does not assume complex reaction laws and assigns zero-order kinetic rates to as many different zones as needed to accurately reproduce the measured profile. The use of multiple zones allows for a good fit to be obtained even for atypical profiles (Maerki et al. 2006). Key benefits of the PROFILE numerical model include simplicity and broad-ranging applicability. PROFILE may be used for any solute that is produced or consumed. Also, variations in φ, bioturbation, and irrigation may be easily incorporated into PROFILE as a function of profile depth. As with most numerical modeling work, the zonefit method (as well as the model method) was initially more work-intensive than the non-model-based methods. However, once the PROFILE model is set up, the algorithm used in PROFILE is fast as compared to AQUASIM (model method).

Results from both the zonefit and model methods were used to infer additional information about the sediment. In addition to evaluating J₀₂ and δDBL, both of these methods were used to predict how O₂ consumption varied as a function of depth and O₂ availability within the sediment oxic zone. Variations in PROFILE-predicted RO₂v and zero-order O₂ consumption zones in response to turbulence-induced changes in J₀₂ and subsequent O₂ availability are shown in green in Fig. 3.6 (discussed further below). While ∂C/∂t was minimal (5% on average per profile) for our quasi-steady-state system, zone-specific RO₂v values in Fig. 3.6 were corrected for ∂C/∂t by establishing a mass balance (Eq. 3.6) based on J₀₂, RO₂v, and ∂C/∂t between O₂ consumption zones over the depth of each profile.
3.4.3.5 Model method – The model method is the only method assessed in this study that evaluates both sides of the SWI simultaneously to predict \(\delta_{\text{DBL}} \). While the model we used, formulated in the sediment module of AQUASIM, is largely based on fitting porewater \(\text{O}_2 \) data and defining sediment \(\text{O}_2 \) consumption (hence, considered a sediment-side method), water-side data (\(C_{\text{bulk}} \)) were also used to define the upper boundary condition (the lower boundary condition was defined by zero flux). Because our diffusion-reaction model provided \(\delta_{\text{DBL}} \) as an output parameter for a steady-state solution, we were thus able to predict \(\delta_{\text{DBL}} \) directly from porewater and bulk water data. Alternatively, the curvefit and zonefit methods evaluate \(J_{\text{O}_2} \) from porewater data and then \(\delta_{\text{DBL}} \) was calculated via Eq. 3.2. On average, model method predictions of \(\delta_{\text{DBL}} \) were found to be 21% higher (\(J_{\text{O}_2} \) correspondingly 20% lower) than the overall mean (Fig. 3.3). AQUASIM-predicted \(\delta_{\text{DBL}} \) are delineated by the red water-side \(\text{O}_2 \) profile fit lines shown in Fig. 3.6.

Monod parameters predicted by AQUASIM to best characterize our \(\text{O}_2 \) profile data and model \(\delta_{\text{DBL}} \) were also used to estimate how \(R_{\text{O}_2v} \) changed as a function of depth and time (Fig. 3.6). Although we incorporated only a single Monod formulation in this study, the sediment module of AQUASIM can be used to implement process-based sediment reaction models with more complex kinetics (e.g., Brand et al. 2009). The AQUASIM model can also be used to predict variation in \(\text{O}_2 \) consumption pathways if several terminal electron acceptors which compete for \(\text{O}_2 \) are considered as parameters in the model. More complex reaction patterns may however require further input parameters based on detailed measurements of other species involved in \(\text{O}_2 \) dynamics, resulting in over-parameterization and longer calculation times.

3.5 Discussion

3.5.1 Water-side versus sediment-side – The general applicability of each of the methods is established by the fact that differences between method results are small relative to overall variation in \(J_{\text{O}_2} \) and \(\delta_{\text{DBL}} \). While some deviation between water- and sediment-side estimates was observed, trends in \(J_{\text{O}_2} \) and \(\delta_{\text{DBL}} \) were sufficiently captured by both water- and sediment-side methods (Fig. 3.2, 3.3). Nevertheless, this deviation warrants further evaluation. As previously mentioned, water-side methods yielded comparable but consistently higher \(J_{\text{O}_2} \) and correspondingly lower \(\delta_{\text{DBL}} \) than sediment-side methods (differences of 1.8 mmol m\(^{-2}\) d\(^{-1}\) (25%)
and 0.4 mm (35%) on average, respectively). Our results are similar to those obtained in a study of total and diffusive O$_2$ uptake in marine sediment by Rabouille et al. (2003), which found that while total O$_2$ flux was in very close agreement with J_{O2} based on the interface gradient (direct method), PROFILE-predicted (zonefit method) J_{O2} was 20% less. Relative to the differences observed between our water- and sediment-side results, variation is much smaller within the water-side group (±7%) and the sediment-side group (±10%), as shown in Table 3.2 and Fig. 3.3. Deviation between water- and sediment-side estimates occurs throughout the full data set for our 12-h experiment, with no evident correlation to turbulence and corresponding u^* (Table 3.2; Fig. 3.2). Methodological issues, assumptions made on sediment properties, and localized sediment O$_2$ transport and consumption processes however may have contributed to the difference in water- and sediment-side estimates.

Estimation of the SWI location was not trivial and may have affected results, although this would have influenced both water- and sediment-side approaches. While the u^* method evaluates the water O$_2$ profile up to several mm above the SWI and the zonefit and model methods assess the full porewater O$_2$ profile, the direct and curvefit methods are focused immediately on the SWI and are thus much more sensitive to the SWI location (Rabouille et al. 2003). Water-side estimates obtained via the direct method could also have been influenced by difficulties associated with quantifying δ_{DBL} directly from O$_2$ profiles. Recent work has suggested that it is inadequate to classify the DBL as quiescent because δ_{DBL} varies continuously as a function of BBL currents (Røy et al. 2004; O'Connor and Hondzo 2008). Brand et al. (2009), however, do show that the use of a quiescent DBL is a valid model for the study of O$_2$ dynamics over time scales of several minutes to hours (i.e., the 8-h seiche cycle inducing variations in turbulence observed during this study) and that high-frequency fluctuations have no significant effect on time-averaged flux.

Results for δ_{DBL} from both water-side methods were typically less than average δ_{DBL} (Fig. 3.3); direct estimates were 11% lower and u^* estimates were 23% lower on average. The established tendency of the u^* method to predict thinner δ_{DBL}, shown both in this study and also by Hondzo et al. (2005), was a likely factor in variation between water- and sediment-side results. While no defined trend was observed between turbulence and deviation in direct and u^* method results, conceptual issues with quantifying ε and u^* during low turbulence conditions are a possible influence.
Sediment O₂ transport processes were defined for sediment-side methods using experimentally-obtained and/or assumed parameters (e.g., \(\varphi \) and bioturbation, respectively). The relatively high degree of uncertainty in these sediment parameters (P. Berg, pers. comm.) could have been a source of deviation between water- and sediment-side results. Quantifying diffusive transport and the relationship between \(\varphi \) and \(D_s \) in sediment is complicated by the heterogeneous nature of typical sediment matrices (Glud 2008). Previous work has shown that the influence of tortuosity on diffusion may be negligible in freshwater sediment, particularly near the SWI, where \(\varphi \) approaches unity (Maerki et al. 2004). Our measured sediment \(\varphi \) was \(\geq 0.95 \) in the upper sediment. In addition, only slight changes in O₂ profile slope were evident at the SWI. For these reasons, we did not correct for tortuosity in curvefit and model method analyses in Bryant et al. (2010; Ch. 2). PROFILE (zonefit method), however, requires tortuosity to be defined via input parameter \(D_s \). To maintain consistency when evaluating the methods, \(D_s \) (which we parameterized as \(D_s = \varphi D \)) was hence incorporated into all sediment-side analyses in this comparative study. Accounting for tortuosity in all sediment-side analyses changed results by \(\sim 5\% \) which directly reflects the additional influence of \(\varphi \) due to the tortuosity correction (\(\varphi D_s = 0.90D \) per Eq. 3.2 as compared to \(\varphi D = 0.95D \) per Bryant et al. 2010; Ch. 2), as discussed previously.

To further equate method comparisons and simplify assumptions made for unknown input parameters, bioturbation and irrigation effects were assumed negligible. However, bioturbation (i.e., the mixing of solutes and solids in sediment due to fauna movement; Berg et al. 2001) has been shown to increase \(J_{O_2} \) estimates based on total sediment O₂ uptake by up to 85% in marine sediment (Glud 2008). Thus, enhanced O₂ flux into the sediment due to these processes would not have been accounted for in \(J_{O_2} \) estimates based solely on diffusive transport (as our results were; Eq. 3.2). To investigate the influence of bioturbation (characterized via biodiffusivity; \(D_b \)) as a possible source of deviation between water- and sediment-side \(J_{O_2} \) values, we performed a follow-up analysis using PROFILE that evaluated \(D_b \) required to estimate \(J_{O_2} \) equivalent to water-side \(J_{O_2} \). Average \(J_{O_2} \) initially predicted by PROFILE via the zonefit method was 5.5 mmol m² d⁻¹ (input \(D_b = 0 \) m² s⁻¹). By changing the \(D_b \) value used to model our O₂ porewater data, we found that a \(D_b \) of \(5.0 \times 10^{-10} \) m² s⁻¹ increased \(J_{O_2} \) to the average water-side \(J_{O_2} \) value (6.9 mmol m² d⁻¹; Table 3.2). These results are comparable to work by Berg et al. (2001), who showed that including bioturbation in their O₂ flux evaluation caused \(J_{O_2} \) to increase
from 4.1 mmol m$^{-2}$ d$^{-1}$ ($D_b = 0 \text{ m}^2 \text{s}^{-1}$) to 6.5 mmol m$^{-2}$ d$^{-1}$ ($D_b = 4.6 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$). Uncertainties in assumed sediment parameters could therefore have contributed to differing sediment- and water-side results.

In addition to difficulties associated with defining bulk sediment properties, sediment-side estimates of J_{O_2} are further complicated by localized sediment O_2 transport and consumption processes that may not be accurately characterized by O_2 porewater data. Variable sediment microtopography effects, as well as bioturbation and irrigation, can have site-specific effects on diffusive O_2 transport (Jørgensen and Des Marais 1990; Røy et al. 2002; Rabouille et al. 2003). Small-scale heterogeneity in mineralization of newly-deposited organic matter at the sediment surface (Zhang et al. 1999; Lewandowski et al. 2002) and O_2 consumption via benthic fauna (Krantzberg 1985; Polerecky et al. 2006; Lewandowski et al. 2007) can also cause localized variation in sediment O_2 uptake. Glud et al. (2009) have shown that small-scale disparities in labile organic matter distribution can result in significant variability in surface sediment O_2 concentrations and localized ‘hot spots’ of benthic O_2 consumption.

The impact of spatially heterogeneous O_2 uptake may not have been accurately characterized by microsensor porewater measurements due to localized O_2 uptake within the sediment occurring at a location near, but not directly impacting, the location of O_2 microsensor measurements (Brand et al. 2008). Water-side estimates remain relatively unaffected by small-scale variation in site-specific sediment processes due to the homogenizing effect of turbulence on C_{bulk}. Water-side estimates may therefore be more representative of a larger areal ‘footprint’ than sediment-side estimates (Berg et al. 2007b; O’Connor and Hondzo 2008). If significant localized sediment O_2 uptake processes were occurring near our O_2 microsensor location but were not captured in profile data, then J_{O_2} estimates based on water-column data (representing a broader region) would be higher than porewater-based J_{O_2} (representing a site-specific location). Our sediment O_2 profiles are parabolic in shape with no kinks or shifts in the curvature (Jørgensen and Revsbech 1985) and the difference between water- and sediment-side estimates of J_{O_2} is relatively small, indicating that the influence of localized O_2 uptake processes on the vertical O_2 distribution was likely not significant. It should be emphasized though that while in-situ microsensor measurements provide a robust method for J_{O_2} estimation under a wide range of turbulence conditions (Lorke et al. 2003; Bryant et al. 2010; Ch. 2), results (particularly those based on sediment-side data) are extremely localized to the microsensor profiling site.
3.5.2 Sediment O₂ consumption – Further evaluation of porewater O₂ data provided beneficial information on O₂ consumption processes within the sediment that could not have been discerned from a water-side assessment. Because we were unable to fully characterize the profiles using second-order polynomial or exponential equations, zero- and first-order kinetic models could not be directly applied to our data set using the curvefit method. However, zero-order and Monod kinetic models were applied using the zonefit and model methods, respectively. Based on these results, variations in RₐO₂v as a function of depth and time are shown in Fig. 3.6 (zonefit (PROFILE) in green; model (AQUASIM) in red). Sediment O₂ consumption during turbulent periods was typically characterized by PROFILE with two consumption zones (Fig. 3.6). RₐO₂v was consistently higher in the upper region of the sediment (immediately below the SWI) and decreased significantly with depth during periods of active turbulence (e.g., profiles 2 to 5 and 11 to 14; Fig. 3.2a). Conversely, during the period when turbulence was negligible (profiles 8 to 9), RₐO₂v decreased and O₂ consumption was characterized by a single zone. AQUASIM results for Monod-based RₐO₂v and the corresponding region of sediment O₂ consumption generally followed the same trend as the zero-order O₂ consumption zones and RₐO₂v values predicted by PROFILE (Fig. 3.6). Corresponding profile-specific RₐO₂a estimates based on zonefit and model method results were within ~20% on average (data not shown). Similar characterization of sediment O₂ consumption by multiple kinetic models verifies results from both methods and also emphasizes the influence that turbulence-induced changes in O₂ availability had on RₐO₂ (Fig. 3.6). While zero-order kinetics are frequently used to characterize sediment O₂ consumption independent of O₂ concentration (Rasmussen and Jørgensen 1992; Jørgensen and Boudreau 2001), it has been shown that RₐO₂v can become dependent on O₂ concentration under limiting O₂ conditions such as those observed during our study (Santschi et al. 1990; Berg et al. 2003; Bryant et al. 2010; Ch. 2).

Our results, which show elevated O₂ consumption in the upper sediment in response to increased O₂ availability at the SWI, indicate water-side control of J₀₂ with the potential sediment O₂ demand surpassing the amount of O₂ supplied to the sediment (O’Connor and Harvey 2008). O₂ consumption can alternatively be the rate-limiting step to mass transport in physiologically active systems experiencing moderate flow (Nishihara and Ackerman 2009). We observed RₐO₂v to decrease with depth, suggesting that RₐO₂v may have been dominated by
mineralization of newly-deposited organic matter at the sediment surface (Santschi et al. 1990; Zhang et al. 1999). Similarly, Brand et al. (2009) showed that Alpnach sediment can be sufficiently modeled as a uniform layer of organic matter with a high intrinsic capacity for O₂ uptake and transport-limited J₀₂. R₀₂v has been found to increase with depth in environments (e.g., oligotrophic) where re-oxidation of reduced compounds dominates O₂ consumption (Glud et al. 2007; Jørgensen and Boudreau 2001).

3.6 Comments and recommendations

While analogous results were obtained from all five methods, each of the methods had advantages and disadvantages that may influence applicability for specific experiments. The direct method is the least complicated, though rapid variations in the DBL may have influenced effective δ=DBL estimates during the ~50 min measurement period of each profile. The u* method incorporates velocity as an independent variable and provided comparable results; however, we had difficulties in fitting the power law to the full set of profiles, particularly for profiles exhibiting scatter in bulk O₂ data. While water-side approaches may lose validity during periods of weak turbulence due to disintegration of the DBL and/or insignificant u* values, the strong correlation between L_B and δ=DBL estimates indicates that velocity-based estimates of δ=DBL may be adequate even for low turbulence. Our results also support the use of L_B to estimate δ=DBL as a function of hydrodynamics, which is somewhat unexpected considering that ε becomes undefined during inactive periods.

As with the direct method, the curvefit method proved to be relatively uncomplicated. Because we could not characterize our sediment profile data with a single curve, we basically applied a sediment-side version of the direct method to O₂ porewater data. While sediment φ and tortuosity must be accounted for, the O₂ profile immediately below the SWI may be less variable (and thus easier to accurately measure) than the DBL in many environments. Thus, the curvefit method may be optimal as a straightforward J₀₂ estimation when porewater data are available and detailed information on variation in R₀₂ within the sediment is not desired.

Estimates of J₀₂ and δ=DBL from the zonefit method were the closest to average values (within 5% and 2%, respectively). Although the zonefit and model methods were more laborious than the other methods, significant information on how O₂ consumption varied with sediment
Depth was obtained. Advantages of the *zonefit method* include the direct analytical approach, the relative ease in which the PROFILE model can be set up and applied, and the broad applicability of PROFILE. However, PROFILE does not include dynamic processes and thus predictions of how J_{O_2} and other fluxes vary over time are dependent on the number of profiles available to characterize transient conditions. A benefit of the AQUASIM diffusion-reaction model used for the *model method* is that it can predict how the vertical O_2 distribution and corresponding SWI fluxes are affected by dynamic conditions (e.g., variations in δ_{DBL}; Brand et al. 2009). This is especially advantageous if only a few profiles and/or proxies for δ_{DBL} (e.g., $u*$, ε) are available. Fortunately, we obtained a sufficient number of profiles over a brief time period to use PROFILE to evaluate the vertical O_2 distribution and J_{O_2} under dynamic conditions. If our data set had not been as extensive, AQUASIM may have been the more appropriate approach.

During this study, a direct correlation between O_2 availability in the sediment and sediment O_2 consumption was observed (as characterized by J_{O_2} and R_{O_2}), indicating that O_2 dynamics were water-side controlled in our highly-organic, cohesive sediment. However, O’Connor et al. (2009) showed that in porous sediment where J_{O_2} is sediment-side controlled, C_{SWI} may approach C_{bulk} under highly turbulent conditions; in this case, J_{O_2} would be inaccurately estimated as zero via Eq. 3.2. This highlights the point that the approaches evaluated in this study are applicable only to diffusive J_{O_2}, as controlled by the driving forces ($C_{bulk} - C_{SWI}$) and δ_{DBL}, and would not apply in systems dominated by advective transport.

In conclusion, by evaluating the robustness of five established methods used to analyze J_{O_2} and δ_{DBL} at the molecular level, we show that estimations of these parameters are not strongly dependent on the method chosen for analysis. Increased correlation was observed in method results based on the same side of the SWI. Although water-side estimates of J_{O_2} were observed to be consistently higher (and estimates of δ_{DBL} lower) than sediment-side estimates, turbulence-induced variations in J_{O_2} and δ_{DBL} were reliably characterized by all five methods. Our results reveal that the effectiveness and applicability of each of the methods depends largely on available data on the vertical O_2 distribution (e.g., data set sufficiently defining effects of dynamic conditions) and sediment properties (e.g., ϕ and D_b). Environmental conditions at the experiment site (e.g., turbulence levels) and information desired from the experiment (e.g., J_{O_2} and/or R_{O_2}) are also factors. Observed variation in water- and sediment-side estimates of J_{O_2} does emphasize however that by focusing solely on a single side of the SWI, difficulties in
analyzing relatively transient water-side data and/or effects of site-specific sediment porewater data could potentially result in significantly different interpretations of sediment-water flux. By evaluating the vertical O$_2$ distribution on both sides of the SWI, a comprehensive assessment of the balance between in situ hydrodynamic and sediment O$_2$ consumption processes and resulting J$_{O2}$ and R$_{O2}$ is attained.

3.7 Acknowledgements

We are grateful to Peter Berg, Miki Hondzo, Ronnie Glud, and Hans Røy for discussion and advice. We also thank Lorenzo Rovelli, Michi Schurter, Christian Dinkel, and Mathias Kirf, who offered invaluable assistance in the field and with equipment. Gay Bryant kindly improved grammar and figures. This research has been funded in part by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA. This research was also supported by the United States National Science Foundation (NSF) through the Integrative Graduate Education and Research Traineeship (IGERT) program (DGE 0504196) and the Swiss National Science Foundation, grants 200020-111763 and 200020-120128.

3.8 References

http://www2.dmu.dk/LakeandEstuarineEcology/nice/NICE_handbook.pdf

Table 3.1. Frequently-used acronyms and notations.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV</td>
<td>Acoustic Doppler velocimeter; used to obtain velocity data for ε and u^* estimations at 10 cm above SWI</td>
</tr>
<tr>
<td>BBL</td>
<td>Bottom boundary layer</td>
</tr>
<tr>
<td>D</td>
<td>Molecular diffusion coefficient of O$_2$ in water ($m^2 d^{-1}$)</td>
</tr>
<tr>
<td>D_s</td>
<td>Molecular diffusion coefficient of O$_2$ in sediment corrected for tortuosity where $D_s = \phi D$ ($m^2 d^{-1}$)</td>
</tr>
<tr>
<td>D_b</td>
<td>Biodiffusion coefficient for O$_2$ ($m^3 d^{-1}$)</td>
</tr>
<tr>
<td>DBL</td>
<td>Diffusive boundary layer</td>
</tr>
<tr>
<td>C_{bulk}</td>
<td>Concentration of O$_2$ in bulk BBL (μmol L$^{-1}$)</td>
</tr>
<tr>
<td>C_{SWI}</td>
<td>Concentration of O$_2$ at SWI (μmol L$^{-1}$)</td>
</tr>
<tr>
<td>J_{O2}</td>
<td>Sediment O$_2$ uptake rate at SWI (mmol m$^{-2}$ d$^{-1}$)</td>
</tr>
<tr>
<td>Method: curvefit</td>
<td>Analytical method based on best-fit of polynomial defining sediment porewater profile</td>
</tr>
<tr>
<td>Method: direct</td>
<td>Analytical method based on directly measuring δ_{DBL} from linear DBL region of microprofile</td>
</tr>
<tr>
<td>Method: model</td>
<td>Analytical method based on predicting δ_{DBL} required to model sediment porewater profile via AQUASIM</td>
</tr>
<tr>
<td>Method: u^*</td>
<td>Analytical method based on estimating δ_{DBL} as a function of friction velocity</td>
</tr>
<tr>
<td>Method: zonefit</td>
<td>Analytical method based on defining multiple zero-order consumption zones to characterize sediment porewater profile via PROFILE</td>
</tr>
<tr>
<td>O$_2$</td>
<td>Dissolved oxygen (μmol L$^{-1}$)</td>
</tr>
<tr>
<td>R_{O2}</td>
<td>O2 consumption rate in sediment, defined volumetrically ($R{O2v}$) or areally (R_{O2a})</td>
</tr>
<tr>
<td>R_{O2a}</td>
<td>Areal O2 consumption rate in sediment (mmol m$^{-2}$ d$^{-1}$) where $R{O2a} = \int R_{O2v} dz$</td>
</tr>
<tr>
<td>R_{O2v}</td>
<td>Volumetric O$_2$ consumption rate in sediment (mmol m$^{-3}$ d$^{-1}$)</td>
</tr>
<tr>
<td>SWI</td>
<td>Sediment-water interface</td>
</tr>
<tr>
<td>u^*</td>
<td>Friction velocity (cm s$^{-1}$)</td>
</tr>
<tr>
<td>z</td>
<td>Distance above or below SWI (mm)</td>
</tr>
<tr>
<td>z_{max}</td>
<td>Depth of sediment oxic zone (mm)</td>
</tr>
<tr>
<td>δ_{DBL}</td>
<td>Diffusive boundary layer thickness (mm)</td>
</tr>
<tr>
<td>ε</td>
<td>Dissipation rate of turbulent kinetic energy (W kg$^{-1}$)</td>
</tr>
<tr>
<td>ϕ</td>
<td>Porosity (void volume per total sediment volume; dimensionless)</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation (units correspond to parameter of interest)</td>
</tr>
<tr>
<td>$\partial C/\partial z$</td>
<td>O$_2$ concentration gradient (mmol m$^{-4}$)</td>
</tr>
</tbody>
</table>
Table 3.2. Average sediment oxygen uptake rate (J_{O2}), average diffusive boundary layer thickness (\delta_{DBL}), and corresponding distributions of results (\pm as compared with averages) based on estimates from all five methods, water-side (direct and u*) and sediment-side (curvefit, zonefit, and model) approaches. The percent difference between water- and sediment-side averages (relative to water-side) shows that water-side estimates of J_{O2} were consistently higher and \delta_{DBL} consistently lower than sediment-side estimates.

<table>
<thead>
<tr>
<th>Profile number</th>
<th>Average J_{O2} (mmol m^{-2} d^{-1})</th>
<th>Average \delta_{DBL} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All methods</td>
<td>Water-side</td>
</tr>
<tr>
<td>1</td>
<td>5.3 ± 2.9</td>
<td>5.9 ± 5.6</td>
</tr>
<tr>
<td>2</td>
<td>6.7 ± 2.1</td>
<td>8.5 ± 0.7</td>
</tr>
<tr>
<td>3</td>
<td>5.7 ± 1.1</td>
<td>6.4 ± 1.8</td>
</tr>
<tr>
<td>4</td>
<td>6.8 ± 1.9</td>
<td>8.6 ± 1.4</td>
</tr>
<tr>
<td>5</td>
<td>6.6 ± 1.0</td>
<td>7.6 ± 0.9</td>
</tr>
<tr>
<td>6</td>
<td>5.6 ± 1.5</td>
<td>7.1 ± 0.9</td>
</tr>
<tr>
<td>7</td>
<td>4.0 ± 0.5</td>
<td>4.6 ± 0.1</td>
</tr>
<tr>
<td>8</td>
<td>1.3 ± 0.5</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>9</td>
<td>1.0 ± 0.3</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>10</td>
<td>5.6 ± 1.1</td>
<td>6.3 ± 0.8</td>
</tr>
<tr>
<td>11</td>
<td>5.9 ± 1.7</td>
<td>7.6 ± 0.5</td>
</tr>
<tr>
<td>12</td>
<td>4.5 ± 0.7</td>
<td>4.8 ± 1.2</td>
</tr>
<tr>
<td>13</td>
<td>6.8 ± 1.2</td>
<td>7.8 ± 0.3</td>
</tr>
<tr>
<td>14</td>
<td>5.2 ± 0.8</td>
<td>5.9 ± 0.6</td>
</tr>
<tr>
<td>Average^{(1)}</td>
<td>5.8 ± 1.2</td>
<td>6.9 ± 0.8</td>
</tr>
</tbody>
</table>

(1) Time-averaged \delta_{DBL} and J_{O2} (characterizing the O_{2} profile series) used for comparative assessment are based on data obtained during active turbulence (thus excluding profiles 8 and 9). However, including data from the quiescent period typically affected average J_{O2} and \delta_{DBL} comparisons by < 5%. Outlier profile 1 data also excluded.
Figure 3.1. Components of a dissolved oxygen (O₂) profile (a) and the five analytical methods (b-f) used to estimate sediment O₂ uptake rate \((J_{O_2}) \) and diffusive boundary layer thickness \((\delta_{DBL}) \) are detailed using a sample O₂ profile (profile 14, obtained at 08:16 h on 28 Aug 07). Open circle symbols are measured O₂ profile data. (a) Key water- and sediment-side parameters include the diffusive boundary layer (DBL), sediment-water interface (SWI), and depth of the
sediment oxic zone \((z_{\text{max}})\). The five methods are defined in panels b–f. (b) Direct method: Fick’s first law (Eq. 3.2) applied using the concentration gradient in the DBL to calculate \(J_{O_2}\) and \(\delta_{\text{DBL}}\) with \(D\) as the diffusion coefficient for \(O_2\) in water. \(C_{\text{bulk}}\) and \(C_{\text{SWI}}\) are the \(O_2\) concentrations in the bulk water and at the SWI, respectively. (c) \(u^*\) method: The vertical distribution of \(O_2\) in the water column is universally scaled using a dimensionless power law for estimating \(\delta_{\text{DBL}}\) as a function of friction velocity \((u^*)\). \(C^+\), \(z^+\), and \(\delta_{\text{DBL}}^+\) are non-dimensional parameters for \(O_2\) concentration, depth, and estimated \(\delta_{\text{DBL}}\), respectively. \(\nu\) is kinematic viscosity, \(B\) is a constant of integration, and \(S_{\text{ct}}\) is the turbulent Schmidt number. Profile-specific \(\delta_{\text{DBL}}^+\) is used to solve for \(\delta_{\text{DBL}}\). (d) Curvefit method: The polynomial \(C(z)\) best describing the porewater \(O_2\) profile immediately below the SWI is identified. The vertical derivative of \(C(z)\) yields the concentration gradient \(\partial C/\partial z\), which is used to obtain \(J_{O_2}\) as a function of the sediment \(O_2\) diffusion coefficient \(D_s\) via Eq. 3.2. (e) Zonefit method: Vertically-integrated PROFILE-predicted volumetric \(O_2\) consumption rates \((R_{O_2v})\) over the sediment oxic zone yields the profile-specific areal \(O_2\) consumption rate \((R_{O_2a})\), which is used to evaluate \(J_{O_2}\) by accounting for an areal rate of change in \(O_2\) \((\partial C/\partial t_a)\). (f) Model method: A sediment diffusion-reaction model (AQUASIM) is used to predict \(\delta_{\text{DBL}}\) required to model measured \(O_2\) porewater profiles. For definitions and units, see Table 3.1.
Figure 3.2. (a) Time series of J_{O2}, energy dissipation (ε), and friction velocity (u_*) as a function of O$_2$ profile number. (b) Turbulence-induced variations in the vertical O$_2$ distribution (as characterized by δ_{DBL} and z_{max}) on both sides of the SWI. J_{O2} and δ_{DBL} values shown are the averages from the five analytical methods investigated here (Fig. 3.1). Modified from Bryant et al. (2010; Ch. 2).
Figure 3.3. Comparison of analytical method results for (a) J_{O2} and (b) δ_{DBL} for all 14 profiles. Data for profile 1 considered outliers.
Figure 3.4. The universal scaling law (Fig. 3.1c) could be fit with the \textit{u*-method} to a majority of our O\textsubscript{2} profiles, e.g., profile 3 in (a). However, the procedure was not robust for certain profiles, such as profile 11 in (b), and resulted in greater uncertainty in \(\delta_{\text{DBL}}\).

Figure 3.5. Relationship between O\textsubscript{2} Batchelor length scale (\(L_{\text{B}}\)) and \(\delta_{\text{DBL}}\). Estimates of \(\delta_{\text{DBL}}\), based on the \textit{u*-method} and the average (with and without \textit{u*-method} results), are compared to \(L_{\text{B}}\) (Eq. 3.8). Profile 1 outlier data are excluded.
Figure 3.6. R_{O2v} as predicted by the zonefit method (PROFILE; based on zero-order kinetics; green) and the model method (AQUASIM; based on Monod kinetics; red). Model fits designated by solid lines and model predictions of sediment O_2 consumption designated by dashed lines. SWI located at depth = 0 mm.
Chapter 4 – Oxygenation-induced variation in sediment oxygen uptake

Bryant, Lee D., Paul A. Gantzer*, John C. Little
Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, 24060, USA.
*Now at: Gantzer Water Resources LLC, Kirkland, Washington, 98084, USA.

To be submitted: Water Research

4.1 Abstract

Hypolimnetic oxygenation systems (HOx) are becoming more frequently used in lakes and reservoirs to elevate dissolved oxygen (O$_2$) while preserving stratification, thereby decreasing levels of reduced chemical species in the hypolimnion. However, diminished HOx performance has been observed due to HOx-induced increases in sediment O$_2$ uptake. Through a series of in situ O$_2$ microprofile and current velocity measurements, we evaluated the vertical O$_2$ distribution at the sediment-water interface as a function of HOx operation. These data were used to determine how sediment O$_2$ uptake rate (J_{O2}) was affected by variable HOx flow, proximity to the HOx, and changes in near-sediment mixing and O$_2$ levels. J_{O2} and sediment O$_2$ levels were found to be significantly influenced by oxygenation on a reservoir-wide basis. Increased sediment O$_2$ uptake and an enhanced sediment oxic zone were observed in response to increasing HOx flow from low to moderately high flow rates. In contrast, J_{O2} decreased to zero and the sediment became anoxic as the vertical O$_2$ distribution collapsed during periods when the HOx was turned off and near-sediment mixing decreased. J_{O2} was also observed to decrease at very high HOx flow rates, which may be a result of transient reservoir conditions, decreased water-side control of sediment O$_2$ uptake, and/or sediment resuspension near the HOx. J_{O2} and sediment O$_2$ availability throughout the reservoir were found to be largely governed by HOx-induced mixing rather than O$_2$ levels in the water column. By quantifying J_{O2} and subsequent sediment O$_2$ availability as a function of HOx operations, this study will contribute to the optimization of water quality and management of HOx-equipped lakes and reservoirs.
4.2 Introduction

Dissolved oxygen (O$_2$) concentration has been identified as one of the most critical ecological factors controlling water quality and associated environmental conditions (Hondzo et al. 2005). Aquatic ecosystems, drinking water quality, and hydropower plants are all negatively affected by depleted O$_2$ levels (Beutel and Horne 1999). Water-quality standards typically require O$_2$ > 5 mg L$^{-1}$ to protect aquatic life (EPA 2000). Hydropower plants are usually required to meet these minimum downstream O$_2$ levels in the water they discharge downstream (Mobley et al. 2007a). It has recently been found that long-term O$_2$ depletion in fish habitats can cause significant declines in fish populations as a result of endocrine system disruptions and subsequent reproductive impairment, with low O$_2$ possibly having even more of an effect than anthropogenic chemicals (Wu et al. 2006). Organic or nutrient loading of thermally stratified lakes and reservoirs may lead to significant depletion of O$_2$ in the deeper hypolimnetic water. Hypolimnetic O$_2$ depletion may result in the release of soluble metals such as iron (Fe) and manganese (Mn) from the sediments, decreasing water quality and increasing drinking-water treatment costs. Orthophosphate release can promote excessive algal growth which stimulates eutrophication and leads to additional O$_2$ consumption from the decomposition of settled algal detritus. Oxygen depletion in lakes and reservoirs is largely controlled by sediment O$_2$ uptake which is regulated by near-sediment hydrodynamics and microbial and chemical reactions occurring within the sediment (Bouldin 1968; Veenstra and Nolen 1991). Understanding these processes is crucial for accurately quantifying the sediment O$_2$ uptake flux (J_{O_2}), optimizing water quality, and successfully managing lakes and reservoirs (Beutel 2003; Lorke et al. 2003).

J_{O_2} is a fundamental parameter that is frequently used to define the overall quality of a water body (Wetzel 2001). O$_2$ must diffuse through the diffusive boundary layer (DBL), a mm-scale laminar layer immediately above the sediment-water interface (SWI), to reach the sediment (see Fig. 2.1 in Bryant et al. 2010; Ch. 2; Jørgensen and Revsbech 1985). J_{O_2} is therefore a function of the O$_2$ concentration driving force across the DBL, which in turn is controlled by turbulence in the overlying water of the bottom boundary layer (BBL) and subsequent DBL thickness (δ_{DBL}; Lorke et al. 2003; Bryant et al. 2010; Ch. 2). Upon reaching the sediment, O$_2$ is used for various biogeochemical processes (e.g., benthic mineralization of organic matter, re-oxidation of reduced metal species). The balance between J_{O_2} and the rate of sediment O$_2$
consumption (R_{O2}) governs O₂ penetration into the sediment or the depth of the sediment oxic zone (z_{max}).

Hypolimnetic oxygenation systems (HOx; e.g., bubble-plume diffusers) are used increasingly by drinking water and hydropower utilities to replenish O₂ and reduce levels of soluble metals in source water while preserving stratification (McGinnis et al. 2002; Singleton and Little 2006; Gantzer et al. 2009a). Bubble-plume HOx are designed to release O₂ gas from porous diffusers positioned near the reservoir bottom, thereby increasing hypolimnetic O₂ levels. These systems are designed to impart relatively low levels of mixing within the hypolimnion while preserving thermal structure; this prevents destratification and the subsequent mixing of the epilimnion and hypolimnion layers (Wüest et al. 1992; McGinnis et al. 2004). Ideally, HOx increases O₂ levels both in the water column and at the SWI in order to suppress the release of reduced chemical species from the sediment and to ultimately decrease concentrations of these species in the hypolimnion (Beutel 2003; Zaw and Chiswell 1999). However, oxygenation may cause additional sediment O₂ uptake due to enhanced J_{O2} resulting from HOx-induced turbulence, increased hypolimnetic O₂ levels, and increased porewater concentrations of reduced chemical species, all of which would increase the O₂-concentration driving force in the DBL (Moore 2003). Unfortunately, reservoir-specific J_{O2} measurements are rarely available and oxygenation systems are often designed based on oxygen depletion rates measured prior to installation of the HOx (Moore et al. 1996; Mobley et al. 1997b). Beutel (2003) showed that after HOx are turned on they are sometimes unable to meet the reservoir O₂ demand initially, possibly because of additional HOx-induced demand.

While the relationship between near-sediment current velocity and J_{O2} has been established (Gundersen and Jørgensen 1990; Mackenthun and Stefan 1998), little work has been done to quantify how HOx operations affect J_{O2} and the vertical distribution of O₂ at the SWI; studies that have been performed have been largely laboratory based (Moore et al. 1996; Beutel 2003). However, it has been shown that J_{O2} can be significantly affected by variations in natural turbulence (Lorke et al. 2003; Bryant et al. 2010) and laboratory-based studies may not capture actual HOx-induced conditions. Therefore, we performed a study based on in situ O₂ sediment-water microprofile and current velocity data to characterize J_{O2} and the corresponding vertical O₂ distribution at the SWI (as characterized by z_{max} and δ_{DBL}) as a function of HOx operation in a drinking-water-supply reservoir. We focus first on a week-long in situ campaign that shows how
J_{O2} and the vertical O\textsubscript{2} distribution at the SWI respond to turning the HOx off and on. We then build on a multi-year data set to quantify the influence of HOx operation at a reservoir-wide scale. To our knowledge, this is one of the first studies to assess how HOx-induced variation in near-sediment mixing and O\textsubscript{2} levels influence J_{O2} and sediment O\textsubscript{2} availability in situ. Corresponding effects on reservoir water quality are also evaluated.

4.3 Materials and methods

4.3.1 Study site – Our research focused on a drinking-water-supply reservoir, Carvin’s Cove Reservoir (CCR), which is managed by the Western Virginia Water Authority (WVWA) to supply drinking water to the county of Roanoke, Virginia, USA. CCR is a stream-fed lake that has been managed by WVWA as a drinking-water-supply reservoir since the late 1940s. CCR is eutrophic and has a maximum depth of 23 m, width of \textasciitilde 600 m, and length of \textasciitilde 8000 m (Fig. 4.1). In 2005, a bubble-plume line-diffuser HOx was installed to replenish O\textsubscript{2} depleted during summer stratification and to reduce Fe and Mn in the source water (McGinnis et al. 2002; Gantzer et al. 2009b). The CCR HOx is comprised of two parallel lines of porous tubing (each line consists of two tubes each \textasciitilde 1 cm in diameter and 625 m in length) located in the deepest section of the reservoir near the WVWA treatment plant outtake, as shown in Fig. 4.1. The CCR HOx delivers pure O\textsubscript{2} gas over a wide range of flow rates, providing considerable operational flexibility for control of hypolimnetic O\textsubscript{2} and turbulence. Hence, we had the ability to control O\textsubscript{2} and turbulence (mixing) conditions in the reservoir by changing the HOx flow rate.

Data have been collected from 2005 through 2008 to assess how the HOx affects CCR source water, with significant improvement in water quality observed since CCR HOx operations began. Work by Gantzer et al. (2009a,b) focusing on water column conditions showed elevated O\textsubscript{2} levels throughout summer stratification and reduced soluble Fe and Mn concentrations, with soluble Mn decreasing by \textasciitilde 97% from pre-HOx levels. Our study on HOx-induced variation in J_{O2} and sediment O\textsubscript{2} availability, as well as a companion study focused on the response of Fe and Mn fluxes to HOx (Ch. 5), support the work by Gantzer et al. by evaluating the influence of the sediment on water quality.
4.3.2 Data collection and analysis – This study is based on in situ data obtained primarily during CCR field campaigns performed during summer 2008. For these campaigns, an in situ microprofiler (MP4; Unisense A/S) and a Workhorse Rio Grande acoustic Doppler current profiler (ADCP; Teledyne RDI, Inc.) were used to obtain microprofiles at the SWI and current velocity series in the water column, respectively. CCR HOx flow was maintained almost continuously at 51 m³ h⁻¹ (or ~1580 kg O₂ d⁻¹; Fig. 4.2) in 2008. However, in the summer the HOx was turned off for two experimental campaigns (each ~1 week in duration) to track the response of the vertical O₂ distribution at the SWI and corresponding JO₂. In August 2008, the MP4 and ADCP were deployed mid-reservoir, ~1000 m upstream of the end of the HOx, at site C3 (Fig. 4.1) and data were collected continuously from August 19 to 30. Data were downloaded and batteries for the MP4 microprofiler and the ADCP were exchanged daily. The HOx was turned off for ~48 h from August 19 to 21. A similar campaign was performed near the HOx at site CVCB from June 18 to 26. The HOx was also turned off during this period for ~48 h from June 19 to 21. While similar results were obtained from both campaigns, analyses and results for this study are based largely on the August C3 campaign due to insufficient background MP4 data for the June CVCB campaign.

In addition to the week-long summer 2008 campaigns, MP4 and ADCP data were collected monthly from June through September 2008 at CVCB, C3, and CR, which is located ~2000 m upstream of the end of the HOx (Fig. 4.1). Monthly MP4 microprofile measurements were also obtained from May to August 2007 downstream, alongside, and 1000 m upstream of the HOx at CC, CVCB, and C3, respectively, under varying flow conditions (Fig. 4.2). Every day that O₂ microprofile measurements were obtained, conductivity, temperature, and O₂ as a function of depth (CTD) profiles were measured at each sampling location using a Seabird Electronics SBE 19plus profiler.

4.3.2.1 O₂ microprofiles – During 2007 and 2008, the in situ autonomous MP4 microprofiler equipped with microsensors (O₂, temperature, and pH) was used to obtain microprofiles at the SWI in CCR. The O₂ microsensor (OX-100; Unisense A/S) had 100-μm tip diameter and depth resolution, fast response time (90% in < 8 s), and negligible stirring sensitivity. The O₂ microsensor was a Clark-type sensor with an internal reference and guard cathode. The temperature microsensor (TP-100; Unisense A/S) was a thermo-coupled sensor
with a spatial resolution of ~200 μm, resolution of ± 0.1 μV per °C, and a 90% response time of < 3 s. The pH microsensor (PH-100; Unisense A/S) was a miniaturized conventional pH electrode with a spatial resolution of ~200 μm, detection limit of ± 0.1 pH unit, and a 90% response time of < 20 s. The pH microsensor was used solely to obtain single-point measurements and not profile data; therefore, the longer response time did not affect speed of profiling. Profiles were measured continuously during the week-long campaigns and profiles were obtained in duplicate at each CCR sampling location during the monthly campaigns. Time required to obtain a full profile was ~50 min and profiles were obtained as follows: 10-mm resolution from 10 cm to 1 cm above the SWI, 1-mm resolution from 1 cm to 0.5 cm above the SWI, 0.1-mm resolution from 0.5 cm above the SWI to 0.5 cm below the SWI. Ten measurements were typically taken at each depth (during the multi-day campaigns three measurements were obtained per depth increment due to data-storage limitations during overnight deployments). Following a pause between measurements for equilibrium to be established at each depth, microsensor data were collected at a rate of 1 Hz. A linear calibration of MP4 microprofile data was obtained using Winkler titration of BBL water sampled immediately above the sediment using a Kemmerer bottle and zero readings from anoxic sediment.

The SWI location was determined via both visual interpretations of O2 profiles (based on identifying linear DBL regions and kinks in the profile due to porosity differences between the sediment and the water column) and using standard deviations of O2 temporal fluctuations obtained at each sampling-depth increment. Standard deviations of solute concentration measurements decrease as the sensor approaches the sediment due to decreased eddy diffusion near the SWI; these variances were also used to determine SWI location (Müller et al. 2002). These two methods yielded consistent and comparable estimates of the SWI location (as discussed by Bryant et al. (2010); Ch. 2).

4.3.2.2 Current velocity – Velocity profile series were collected using a 1200 kHz RDI ZedHed ADCP equipped with four acoustic beams slanted at 20°. The ADCP, positioned adrift alongside our primary research vessel and facing downward from the water surface, profiled the full water-column depth based on a 1-m bin size. Samples were obtained in burst mode with 50 samples per ensemble at a rate of 2 Hz. Accuracy of velocity measurements was ± 0.25% of
water + boat velocity ± 0.25 cm s\(^{-1}\). During measurements, the boat remained stationary so boat velocity was effectively zero.

A limitation of using the ADCP for water-column velocity measurements is its range of data collection, as it cannot be used to collect data over the entire water column. We were particularly interested in near-sediment velocities for this study. However, the ADCP has a blanking distance near the sediment where consistent data series are not collected due to interference from the angled acoustic beams reflecting off the sediment surface, thereby contaminating the acoustic signal returned to the ADCP. The near-sediment blank zone is ~6% of the total water-column depth (as defined by RDI) or approximately the bottom 1 m in CCR. Hence, near-sediment velocities were evaluated at ~1.5 m above the sediment, with current velocities also assessed at 3 m above the sediment and 5 m below the water surface.

4.3.2.3 \(O_2\) microprofile analyses – \(J_{O_2}\) was evaluated based on \(O_2\) microprofile data using Fick’s first law of diffusion (Rasmussen and Jørgensen 1992; Lavery 2001; Higashino et al. 2004):

\[
J_{O_2} = -
\varphi \left[\frac{\partial C}{\partial z} \right]_{sed} = -D_s \frac{\partial C}{\partial z}_{water} = \frac{D_{bulk} - C_{SWI}}{\delta_{DBL}} [\text{mmol m}^{-2} \text{ d}^{-1}] \quad (4.1)
\]

where \(\varphi\) is sediment porosity (m\(^3\) voids m\(^{-3}\) total volume), \(D_s\) is the diffusion coefficient for \(O_2\) in sediment (m\(^2\) s\(^{-1}\)), \(D\) is the diffusion coefficient for \(O_2\) in water (m\(^2\) s\(^{-1}\)), \(\partial C/\partial z\) is the linear \(O_2\) concentration gradient in the DBL immediately above or below the SWI (\(\mu\text{mol m}^{-3}\)), \(C_{bulk}\) is the \(O_2\) concentration in the bulk BBL (\(\mu\text{mol L}^{-1}\)), and \(C_{SWI}\) is the \(O_2\) concentration at the SWI (\(\mu\text{mol L}^{-1}\)), as shown in Fig. 2.1a of Ch. 2. Diffusive transport is defined in the sediment by the second term in Eq. 4.1 and in the water by the third and fourth terms.

Sediment cores from the primary sampling locations (method detailed in Ch. 2 and 5) were evaluated for \(\varphi\) following Dalsgaard et al. (2000) and \(\varphi\) values of 0.95-0.97 were obtained. Values for \(D\) were based on \(D = 1.97 \times 10^{-9}\) m\(^2\) s\(^{-1}\) at 20°C and correcting for temperature using the Stokes-Einstein relationship (Li and Gregory 1974; Arega and Lee 2005). \(D_s\) was defined as \(D_s = \varphi D\) to correct for sediment tortuosity as a function of \(\varphi\) (Berg et al. 1998; Glud 2008; Ch.
The temporal change in O₂ concentration \(\frac{\partial C}{\partial t} \) was evaluated for our series of in situ O₂ profiles by comparing profiles immediately before and after one another and calculating the rate of change in O₂ at each depth. \(\frac{\partial C}{\partial t} \) was found to be on average <5% of \(J_{O₂} \), establishing that our profiles were at quasi-steady state and that turbulence conditions in CCR were changing slowly relative to the duration of an O₂ microprofile.

Because water-side O₂ profile data is frequently more difficult to evaluate due to rapid turbulence-induced variation in \(\delta_{DBL} \) (Bryant et al. 2010; Ch. 2), \(J_{O₂} \) was evaluated from sediment O₂ porewater data using the second term in Eq. 4.1. The DBL was characterized from both sides of the SWI and results were compared (Appendix A.1). Water-side \(\delta_{DBL} \) was estimated as a function of the measured \(\frac{\partial C}{\partial z} \) in the DBL using the third and fourth terms in Eq. 4.1. Sediment-side \(\delta_{DBL} \) was estimated as a function of sediment-side \(J_{O₂} \) using the second and fourth terms in Eq. 4.1. Water-side \(\delta_{DBL} \) were used in subsequent evaluations of \(J_{O₂} \) to allow for independent comparison. As shown in Appendix A.1, water- and sediment-side \(\delta_{DBL} \) estimates were found to have moderately good correlation \((R^2 = 0.76) \).

The balance between O₂ transport and consumption is defined by

\[
J_{O₂} = \int_0^{Z_{max}} R_{O₂v} \, dz + \int_0^{Z_{max}} \frac{\partial C}{\partial t} \, dz \quad [\text{mmol m}^{-2} \text{ d}^{-1}] \quad (4.2)
\]

where volumetric \(R_{O₂} \) \((R_{O₂v}; \text{mmol m}^{-3} \text{ d}^{-1}) \) and the change in O₂ over time \((\frac{\partial C}{\partial t}; \text{mmol m}^{-3} \text{ d}^{-1}) \) are integrated over the sediment profile depth to \(Z_{max} \) (designated as the depth where O₂ drops to < 3 \(\mu \text{mol L}^{-1} \)). \(R_{O₂v} \) was evaluated using the numerical procedure PROFILE (Berg et al. 1998) which characterizes zero-order sediment O₂ consumption as a function of depth using O₂ porewater profile data (Bryant et al. 2010; Ch. 2). Depth-integrated values of \(R_{O₂v} \) and \(\frac{\partial C}{\partial t} \) yield the areal parameters \(R_{O₂a} \) and \(\frac{\partial C}{\partial t_a} \), respectively (mmol m\(^{-2}\) d\(^{-1}\)), which are directly comparable to \(J_{O₂} \) via Eq. 4.2 (Epping and Helder 1997).

4.3.2.4 Turbulence estimations – As previously discussed, we were restricted in obtaining near-sediment velocities with our ADCP due to the limited accuracy approaching the sediment. Our estimates of velocity at ~1.5 m above the sediment are thus a relative measure of near-sediment mixing conditions. Additionally, turbulence has been shown by Lorke et al.
(2003) to be a controlling factor in δ_{DBL} and J_{O2} estimates rather than velocity. Turbulence is characterized by the dissipation rate of turbulent kinetic energy, ε ($W \ kg^{-1}$), which is frequently estimated by applying the inertial dissipation method (Grant et al. 1962) to near-sediment (~10 cm) velocity data, as performed by Bryant et al. (2010; Ch.2) using acoustic Doppler velocimeter data. To quantify turbulence levels in the absence of more precise near-sediment velocity data for the current study, we used a correlation between the DBL, the viscous boundary layer (the cm-scale region immediately above the DBL), and friction velocity (u_*) to estimate ε. According to Wüest and Lorke (2003), δ_{DBL} and viscous boundary layer thickness (δ_v) are related by

$$\delta_{\text{DBL}} = \delta_v \left(\frac{D}{v} \right)^{1/3} \ [m] \quad (4.3)$$

where v is the molecular viscosity of water ($m^2 \ s^{-1}$). In turn, δ_v is defined as a function of u_* (Schlichting 2000) via

$$\delta_v = \frac{11v}{u_*} \ [m] \quad (4.4)$$

Merging Eq. 4.3 and 4.4 allowed u_* to be related to δ_{DBL}:

$$u_* = \frac{11v}{\delta_{\text{DBL}}} \left(\frac{D}{v} \right)^{1/3} \ [m \ s^{-1}] \quad (4.5)$$

The u_* values estimate the frictional stress of BBL currents on the sediment and thus, similar to ε, characterize BBL turbulence. Estimated u_* values obtained via Eq. 4.5 were used to calculate ε using the law-of-the-wall assumption (Lorke et al. 2003):

$$\varepsilon = \frac{u_*^3}{\kappa z} \ [W \ kg^{-1}] \quad (4.6)$$
where κ (the von Karman constant) is 0.41 and z is height above the sediment. For these estimations, ε was evaluated at an assumed $z = 10$ cm to obtain near-sediment ε predictions and to allow for direct comparison with ε based on velocity measured at $z = 10$ cm (Bryant et al. 2010; Ch. 2) to verify that ε estimates for this study were typical for a freshwater lake. Because sediment-side δ_{DBL} is estimated as a function of J_{O_2} (Eq. 4.1), water-side δ_{DBL} was used in ε calculations to allow for an independent evaluation of how J_{O_2} was affected by variations in turbulence.

4.4 Results and Discussion

4.4.1 Vertical O_2 distribution at SWI

During the 2008 campaign, the HOx was turned off for ~ 48 h in late June and in late August, as previously discussed (Fig. 4.2). Significant variation in the vertical O_2 distribution near the SWI was observed in response to halting oxygenation. Profiles (each of ~ 50 min duration) were collected continuously over the course of both 2008 week-long campaigns. A summary of profile results showing key trends in the response of the vertical O_2 distribution during the August C3 campaign is presented in Fig. 4.3. As shown in Fig. 4.3a, at the time the HOx was turned off (August 19 at $\sim 14:00$), O_2 levels were relatively high both in the water immediately above the sediment ($\sim 100 \mu\text{mol L}^{-1}$) and within the sediment porewater ($\sim 90 \mu\text{mol L}^{-1}$ at the SWI with z_{max} of 0.8 mm). A constant C_{bulk} and a defined DBL are also evident, indicating active BBL turbulence. However, as indicated by the 17:39 profile (time indicates the point at which the microsensor encountered the SWI), within a few hours of turning the HOx off O_2 started to become depleted from the sediment and overlying water. By 20:02 (~ 6 h following HOx turn-off), the sediment and overlying water column had become completely anoxic. Excluding a brief transient period on August 21 (profiles 15:11, 15:58) when near-sediment O_2 increased immediately after HOx operation resumed at $\sim 14:00$ August 21, conditions remained anoxic until August 29 (Fig. 4.3b; discussed below). A relatively rapid increase in O_2 is then observed on both sides of the SWI, with the vertical distribution returning to a structure similar to that at the beginning of the campaign (Fig. 4.3a).

Contour plots of O_2 microprofile and hypolimnetic O_2 data based on a Kriging interpolation scheme are shown in Fig. 4.4. While O_2 levels near the SWI changed substantially in response to turning off the HOx (Fig. 4.4a), O_2 remained relatively constant ($\sim 150 \mu\text{mol L}^{-1}$)
at 8 cm above the sediment (Fig. 4.4b). The water column was also affected minimally (Fig. 4.4c). The experiment was designed to minimize effects on hypolimnetic O2 levels and thus preserve drinking water quality. This accounts for the short (~48 h) duration of the turn-off period. Previous work by Gantzer et al. (2009a) showed that turning the HOx off for a longer period (several weeks) can significantly decrease water quality. The fact that O2 levels remained constant a few cm above the sediment during the period the HOx was not in operation indicates that HOx-induced turbulence plays a significant role in driving oxygenated water down to the SWI. Bryant et al. (2010; Ch. 2) similarly showed that seiche-induced turbulence was a controlling factor in maintaining oxic sediment conditions regardless of O2 levels immediately above the SWI.

HOx operations are shown to have a significant influence on the vertical O2 distribution at the SWI (Fig. 4.3, 4.4). A direct correlation between HOx operation and parameters quantifying the vertical O2 distribution (O2 at 5 cm above the sediment (C5), C_SWI, and z_max) is shown in Fig. 4.5. As C_SWI dropped from ~125 to 0 μmol L⁻¹ after turning off the HOx on August 19 (Fig. 4.5a), z_max also rapidly decreased from 1 to 0 mm as O2 was depleted from the sediment (excluding the brief oxic period on August 21 after HOx operation resumed). Sediment porewater and the SWI remain anoxic and C5 remains low until August 29 when oxic sediment conditions were re-established. We did not anticipate anoxic conditions to occur so rapidly following the halt of HOx operation during the initial June campaign; thus, we did not capture the initial O2 depletion phase (Fig. 4.5b). However, the response of the vertical O2 distribution to turning the HOx off and on is similar at CVCB (Fig. 4.5b) to that observed at C3 (Fig. 4.5a). Data obtained before and after each week-long campaign (e.g., August 12 and September 14 in Fig. 4.5a) compare well with average values of C_SWI and z_max during regular continuous HOx operation (C_SWI = 94 ± 38 μmol L⁻¹ and z_max = 1.4 ± 0.6 mm at C3 (n = 22) and 61 ± 45 μmol L⁻¹ and 0.7 ± 0.4 mm (n = 15) at CVCB; full data set not shown).

Based on hypolimnetic O2 data, it has been shown that it typically takes ~1 week for a similar HOx-equipped reservoir to return to 'steady-state' conditions after resuming oxygenation, with significantly higher O2 depletion rates in the hypolimnion during the initial week (Gantzer 2002). Similarly, it took ~8 days for the SWI vertical O2 distribution to re-establish during the C3 campaign and ~5 days during the CVCB campaign (Fig. 4.3-4.5). This delayed response may be attributed to both localized sediment resuspension and time required
for a uniform flow pattern in the reservoir to be re-established by the HOx plume. Sediment resuspension and subsequent introduction of reduced species into the hypolimnion, particularly near the HOx, likely occurs after turning on the HOx and prior to O₂ gas flow coming to equilibrium within the reservoir system. The time required for suspended particles to settle in the near field and the time required for HOx-induced mixing to re-establish the sediment-water vertical O₂ structure in regions farther away would both contribute to the delayed response.

A storm occurred on August 27; however, while O₂ levels increased in the metalimnion at approximately the same elevation as stream input at the back of CCR (9 m above the sediment; region of decreased O₂ in Fig. 4.4c), the bulk hypolimnion and near-sediment water were not affected (per CTD measurements; data not shown). Increased mixing in the hypolimnion was also not observed, indicating that the influence of the storm did not significantly affect results and observed variations in sediment O₂ availability may be legitimately related to changes in HOx operation.

4.4.2 HOx flow and current velocity

Current velocity time series (as measured via ADCP) in relation to HOx flow are presented in Fig. 4.6. In Fig. 4.6a, near-sediment velocities at ~1.5 m above the sediment are averages based on ~4-h time periods during the C3 August campaign. Average daily velocities at 3 m above the sediment (bulk hypolimnion) and 5 m below the water surface (bulk epilimnion) are also shown. While current velocities in the bulk hypolimnion and epilimnion do not seem to have been affected by HOx operations, near-sediment velocity (+1.5 m) dropped sharply soon after the HOx was turned off on August 19 (Fig. 4.6a). After the HOx was turned back on (August 21), near-sediment velocities are observed to increase though they remained quite variable. Near-sediment velocity returned to pre-campaign levels (~ 5 cm s⁻¹; summer average was 6.2 cm s⁻¹) on August 29, which directly corresponds with the timing of the re-established vertical O₂ structure at the SWI (Fig. 4.3-4.5). Although it took over a week before near-sediment velocities returned to pre-campaign levels mid-reservoir, near-sediment velocities at both CVCB and C3 were observed to increase immediately in both magnitude and degree of variation after resuming oxygenation (Fig. 4.6b; the period when the HOx was turned off is indicated in red) which clearly shows the influence of HOx-induced mixing.

Although the influence of wind-induced mixing (i.e., seiching) on the sediment-water vertical O₂ distribution (Bryant et al. 2010; Ch.2) was expected to be minimal due to relatively
mild average wind speeds and irregular basin geometry (Fig. 4.1), wind speed (based on National Oceanographic and Atmospheric Administration (NOAA) local climatological data for the Roanoke airport, located ~5 km from CCR) was assessed to determine if wind-induced seiching was an influence in observed changes in current velocity (NOAA 2008). As anticipated, a correlation between average wind speed and current velocity (both near-sediment and in the epilimnion) was not observed (Appendix A.2; Fig. 4.6). Wind speed increased during the period of August 19 to 23 when the HOx was turned off, while near-sediment current velocity subsided in the absence of HOx-induced mixing (Fig. 4.6). Additionally, as current velocity and near-sediment O$_2$ levels increased back to pre-campaign levels on August 28-30, wind speed dropped significantly. Thus, seiche-induced turbulence was not a significant factor in sediment-water O$_2$ dynamics in CCR during our experimental campaigns.

4.4.3 **HOx-induced variation in sediment O$_2$ uptake** – While HOx are designed to remediate problems caused by O$_2$ depletion, conceptually these systems should also enhance O$_2$ flux into the sediment due to increased O$_2$ and turbulence levels in the lower hypolimnion and subsequent suppression of the DBL (discussed in Introduction and in Ch. 2; Bryant et. al 2010). The response of J_{O_2} and the vertical O$_2$ distribution (as characterized by C_{SW_1} and δ_{DBL}) to HOx operations closely parallels observed variation in current velocity and estimated turbulence levels (as characterized by ε; Fig. 4.7). During ongoing oxygenation (Fig. 4.2), average summer J_{O_2} and δ_{DBL} at C3 were 12.5 ± 7.6 mmol m$^{-2}$ d$^{-1}$ and 1.6 ± 0.9 mm, respectively (full data set not shown). However, in response to turning off the HOx on August 19, δ_{DBL} increased from 0.7 mm to the point of becoming undefined (Fig. 4.7a; no discernable DBL was measurable at $\delta_{DBL} > 5$ mm; hence, a nominal maximum $\delta_{DBL} = 5$ mm was assumed for this study). Simultaneously, J_{O_2} decreased from 8 to 0 mmol m$^{-2}$ d$^{-1}$ and C_{SW_1} dropped from ~130 to 0 μmol L$^{-1}$ as diffusive transport of O$_2$ was restricted and O$_2$ was depleted from the sediment. Once the DBL was suppressed back to a defined structure on August 29, J_{O_2} increased to ~15 mmol m$^{-2}$ d$^{-1}$ (Fig. 4.7a). As indicated by Fig. 4.3b, elevated J_{O_2} and decreased δ_{DBL} are also observed briefly following HOx start-up on August 21, which may be attributed to a large internal wave induced by turning on the HOx. A peak in near-sediment current velocity is also observed at this time (Fig. 4.7b).
In Fig. 4.7b, near-sediment current velocity is shown to correlate significantly with ε, both of which decreased sharply during the 48-h period when the HOx was turned off. The clear relationship between ADCP velocity data and estimated ε values (based on independent O$_2$ microprofile data) supports our evaluation of ε as a function of δ_{DBL} and highlights the influence of mixing (as quantified by near-sediment current velocity) on δ_{DBL}. Our δ_{DBL}-based ε estimates are within the same range as ADCP-based ε values obtained by Bryant et al. (2010; Ch. 2) characterizing seiche-induced mixing in a freshwater system.

HOx-induced mixing is further established by variations in temperature near the SWI (based on temperature microprofile data) which closely follow trends in ε and current velocity (Fig. 4.7b). HOx-induced mixing has been shown to result in elevated BBL temperature (Hess 1975; Gantzer et al. 2009a; Liboriussen et al. 2009). Our results (Fig. 4.7) thus clearly reveal the significant influence that HOx operation can have on the degree of mixing in the hypolimnion and resultant sediment O$_2$ uptake.

4.4.4 J_{O_2} as a function of flow rate

To evaluate the relationship between HOx flow rate and sediment O$_2$ uptake more comprehensively, we built on summer 2008 results by incorporating additional data from summer 2007. The 2008 off/on HOx experiments reveal that J_{O_2} and the sediment O$_2$ distribution responded directly to changes in HOx operation (Fig. 4.7). However, these results are based on data for the two flow rates used during the 2008 campaigns (0 and 51 m3 h$^{-1}$) and characterize two extremes of zero flow and high flow. We therefore included O$_2$ microprofile data obtained at C3 and CVCB while the HOx was operated at five different flow rates during 2007 – 2008 (Fig. 4.2; Table 4.1) to assess J_{O_2}, C_{SWL}, and z_{max} over a broader range of flow conditions.

As indicated in Fig. 4.7, J_{O_2} was strongly influenced by variation in HOx flow rate. J_{O_2} and HOx flow were found to be directly related for low to moderately-high flow rates in both the near field and mid-reservoir region; however, J_{O_2} decreased at flow rates greater than \sim50 m3 h$^{-1}$ (Fig. 4.8). While a similar J_{O_2} response was observed at both locations, data for the near field exhibited significant variation and were less correlated to HOx flow as compared to mid-reservoir data (CVCB $R^2 = 0.79$ versus C3 $R^2 = 0.86$; discussed below). Conceptually, J_{O_2} should increase in response to turbulence-induced decreases in δ_{DBL} when sediment O$_2$ uptake is water-side controlled and limited by diffusive transport. However, reduced J_{O_2} at very high flow...
rates could be attributed to time required for steady-state to re-establish, a change in processes governing sediment O₂ uptake, and/or sediment resuspension effects. We encountered mechanical difficulties operating the HOx at very high flow rates (>51 m³ h⁻¹) for extended periods of time. Hence, data were collected for shorter time periods (1-2 weeks) at these flow rates and steady-state conditions may have been less established than for lower flow rates. Laboratory studies focused on HOx-induced sediment O₂ uptake have shown that J₀₂ shifts from being water-side controlled to sediment-side controlled as O₂ uptake becomes substrate-limited (i.e., independent of O₂ concentration) at very high flow rates (Moore et al. 1996; Beutel 2003) or in the ocean (Glud et al. 2009). An in situ study focused on hypolimnetic oxygenation using a downflow bubble contact aerator (Speece Cone) yielded similar results (Moore 2003). Hence, sediment O₂ uptake may not have been controlled by diffusive J₀₂ at flow rates greater than 50 m³ h⁻¹. However, the fact that J₀₂ did not become constant but actually decreased at very high flow indicates that substrate-limitation of O₂ uptake may not have been the only factor in the observed J₀₂ response.

Elevated turbulence near the SWI has been shown to cause sediment resuspension, both in response to seiche-induced mixing (Davison et al. 1982; Charlton and Lean 1987; Kalnejais et al. 2007) and HOx operation (Moore et al. 1996; Gantzer et al. 2009b). Decreased J₀₂ at very high flow rates may hence also be attributed to elevated rates of HOx-induced mixing disturbing the sediment, particularly in the near field. Subsequent dispersion of resuspended sediment may have been a factor in mid-reservoir results as well. As near-sediment O₂ levels are depleted due to oxidation of resuspended reduced species, J₀₂ would subsequently decrease as the O₂ concentration gradient driving force at the SWI diminished. Furthermore, if the sediment were disturbed substantially, the defined DBL structure supporting diffusive transport would break down which would also result in significantly reduced J₀₂ (Fig. 4.7).

4.4.5 Effect of HOx on sediment O₂ availability – While induced J₀₂ can be problematic if not properly accounted for in HOx design and operation, increased J₀₂ is beneficial if sediment O₂ levels are sufficiently maintained to prevent the release of reduced soluble species into the water column (Beutel 2003). As shown in Fig. 4.9a, a moderate correlation (R² = 0.61) in estimated J₀₂ and C_swI was observed mid-reservoir (C3), with increased O₂ flux into the sediment corresponding to more oxic conditions at the SWI. A weaker correlation (R² = 0.47) is
again observed alongside the HOx at CVCB (discussed below). O$_2$ levels merely 5 cm above the SWI had much less of an influence on J$_{O2}$ (Fig. 4.9b) with zero flux ($J_{O2} = 0$ mmol m$^{-2}$ d$^{-1}$) occurring even when C$_2$ remains fairly high, as also observed in Fig. 4.4 and 4.5. Although hypolimnetic O$_2$ levels obviously must be high enough to act as an O$_2$ source to the sediment, a relationship between O$_2$ in the bulk hypolimnion (estimated from weekly CTD profiles) and J$_{O2}$ was not found (data not shown). Thus, regardless of hypolimnetic and near-sediment O$_2$ levels, J$_{O2}$ is shown to be much more strongly linked to O$_2$ directly at the SWI. These results emphasize the controlling role that turbulent mixing plays in driving the oxygenated hypolimnetic water down to the sediment (Fig. 4.7), as also shown by previous work (Glud et al. 2007; Bryant et al. 2010; Ch. 2).

Upon reaching the SWI, a balance between the rate at which O$_2$ is supplied to the sediment (quantified by J$_{O2}$) and the rate at which O$_2$ is consumed within the sediment (quantified by R$_{O2}$) establishes the sediment oxic zone (Jørgensen and Boudreau 2001; Higashino et al. 2004; Bryant et al. 2010: Ch.2). The extent of the sediment oxic zone (as quantified by z$_{max}$) and HOx flow rate were found to be strongly related in both the near field and mid-reservoir region (CVCB $R^2 = 0.96$; C3 $R^2 = 0.84$), with sediment O$_2$ penetration increasing directly in response to elevated flow (Fig. 4.10). Unlike J$_{O2}$ (Fig. 4.8), reduced z$_{max}$ at very high flow rates did not occur. This indicates that while J$_{O2}$ decreased at very high flow rates, a sufficient level of O$_2$ reached the sediment to maintain oxic sediment conditions in both sampling regions. Taking into account results shown in Fig. 4.8-4.9, it is evident that HOx-induced increases in J$_{O2}$ and C$_{SWI}$ facilitated an enhanced sediment oxic zone throughout CCR.

The response of z$_{max}$ to increased flow rate was quite similar in both regions, although sediment O$_2$ penetration was slightly lower near the HOx than mid-reservoir (Fig. 4.10). Average J$_{O2}$ values were also comparable though slightly higher in the near field at CVCB than in the C3 mid-reservoir region (14.8 vs. 13.4 mmol m$^{-2}$ d$^{-1}$; Table 4.2). J$_{O2}$ and R$_{O2}$ are equivalent at steady-state (Bryant et al. 2010; Ch. 2-3); hence, these results suggest that increased O$_2$ reached the near-field sediment but was then consumed more rapidly by sediment O$_2$ consumption processes, resulting in decreased z$_{max}$. To complete the balance between J$_{O2}$ and z$_{max}$, sediment O$_2$ consumption was evaluated based on sediment O$_2$ microprofile data using the numerical procedure PROFILE (Berg et al. 1998; Bryant et al. 2010; Ch. 2). As shown in Table 4.2, R$_{O2a}$ estimates based on PROFILE results verify that sediment O$_2$ consumption was similar.
in both regions but also somewhat higher closer to the HOx. Near-field sediment has been found to have significantly higher levels of total organic carbon, Fe, and Mn in the bulk sediment which may result from enhanced oxide precipitation and sediment focusing near the HOx (Ch. 5). Thus, sediment in this deeper CCR region most likely has increased sources of electron acceptors and subsequently would have a greater capacity for O2 consumption. However, the fact that fairly similar \(z_{\text{max}} \) were observed in both the near field and mid-reservoir region indicates that oxygenation maintained a sufficient balance between sediment O2 supply and consumption processes and the resultant sediment oxic zone. Conversely, the back region (CR; Fig. 4.1) is significantly less affected by HOx operations. As a result, \(J_{\text{O2}} \) was not maintained (Table 4.2) and the sediment became anoxic relatively early in summer 2008, subsequently becoming a source of soluble metals to the water column (as shown in Ch. 5).

4.4.6 Influence of HOx proximity – While HOx operations maintained a fairly uniform sediment oxic zone and average \(J_{\text{O2}} \) were comparable in both the near field and mid-reservoir region (Fig. 4.8, 4.10; Table 4.2), proximity to the HOx strongly influenced both the response time and variability in results. After the HOx was turned on, it took ~5 days for the vertical O2 distribution to be restored in the near field and ~8 days mid-reservoir. Although the sediment-water vertical O2 distribution was re-established more rapidly in the near-field region, consistently increased variability in near field results indicate that the overall structure was less stable during oxygenation. The degree of variation in sediment O2 parameters (e.g., \(J_{\text{O2}}, z_{\text{max}}, C_{\text{SWI}}, \) Table 4.1) was typically higher and correlations between \(J_{\text{O2}} \) and both \(C_{\text{SWI}} \) and HOx flow were weaker near the HOx (as indicated by \(R^2 \) values in Fig. 4.8, 4.9). While \(z_{\text{max}} \) and flow rate were strongly correlated in both regions (Fig. 4.10), the relationship between \(J_{\text{O2}} \) and water-side \(\delta_{\text{DBL}} \) was also found to be less significant in the near field (CVCB \(R^2 = 0.44 \) versus C3 \(R^2 = 0.79 \); Appendix A.3).

Regarding response time, turning the HOx on most likely immediately stirred up the sediment in the near field (Gantzer 2002), introducing reduced species into the water column. Suspended sediment would have thus decreased O2 levels both in the near field and at locations farther away if the reduced species were redistributed. The amount of time required for suspended sediment to settle and for near-sediment mixing to resume may have governed the re-establishment of oxic sediment conditions (Fig. 4.5, 4.7). The sediment-water O2 distribution
was re-established more quickly near the HOx due to direct mixing effects. However, as indicated by decreased consistency in results (Fig. 4.8, 4.9; Appendix A.3), the O₂ distribution in the near field was less stable on a long-term basis which is likely due to flow instabilities and ongoing sediment resuspension. On the other hand, while the response mid-reservoir was more gradual after the HOx was turned on as it took longer for HOx-induced increases in O₂ and near-sediment turbulence to influence sediment O₂ conditions, once steady-state conditions were re-established the overall sediment-water O₂ distribution remained fairly stable due to negligible sediment resuspension and a relatively uniform flow pattern.

After steady-state conditions with oxygenation were established, it is likely that the spatial influence of oxygenation was still affected by sediment resuspension near the HOx and/or HOx plume detrainment in regions farther away. Because sediment resuspension can result in both decreased near-sediment O₂ levels and disturbance of the sediment-water O₂ structure, HOx-induced sediment resuspension may have contributed to both decreased correlation in near-field results (Fig. 4.8-4.9; Appendix A.3) and reduced J₀₂ at very high flow rates (Fig. 4.8). However, HOx-induced sediment disturbance may have facilitated non-diffusive O₂ transport at the SWI, thereby maintaining zₘₐₓ (Fig. 4.10). Sediment resuspension in response to HOx operations is indicated by CCR sediment trap data (Ch. 5; Gantzer et al. 2009b) showing increased sedimentation in the lower hypolimnion immediately over the HOx as compared to other locations, although this may be partially attributed to sediment focusing in the deeper region of the reservoir (Fig. 4.1; Schaller and Wehrli 1997). HOx-induced sediment resuspension is further supported by measurements of total and soluble Fe and Mn in the water immediately overlying the sediment showing that total and soluble metal levels were significantly higher near the HOx (Ch. 5).

Although suspended sediment may have been dispersed to other regions of the reservoir, deleterious sediment resuspension effects were likely much more significant in the near field. Furthermore, areas closer to the HOx may have been more negatively influenced by variable turbulence as opposed to the mid-reservoir region (McGinnis et al. 2004). Ideally HOx-induced turbulence establishes a well-mixed BBL (Singleton and Little 2006), which is evident in our results showing relatively similar current velocities throughout the reservoir (Fig. 4.6b). However, the area near the HOx can be affected by flow recirculation and intermittent stagnant zones, while regions mid-reservoir that are exposed to detrained water from the HOx bubble
plume are most likely closer to steady-state (Singleton et al., unpubl.). HOx plume model results by Singleton et al. (2007) showed that the region most directly influenced by the HOx was a detrainment region between the depth of maximum plume rise and the fallback elevation of equal density. C3 is located within this detrainment region, while CVCB is located below the fallback elevation. Thus, HOx-induced mixing is likely more disruptive close to the HOx than at distances farther away where the flow pattern established by plume detrainment is more uniform. As a result, especially when taking sediment resuspension effects into consideration, the vertical O₂ distribution at the SWI is more easily preserved farther away from the HOx. MP4 microprofile data obtained at C3 (Fig. 4.3) did typically maintain a more defined structure than those obtained closer to the HOx, particularly below the HOx at CC (data not shown). Nevertheless, as indicated by Fig. 4.8 and 4.9, while near-field results were less consistent general sediment O₂ availability was not significantly affected (Fig. 4.10).

4.4.7 Effect on source water quality – While HOx operations were found to increase sediment O₂ uptake, an O₂ balance performed on the CCR water column by Gantzer et al. (2009a) showed that oxygenation caused an overall decrease in background and HOx-induced hypolimnetic O₂ demand after several years of HOx operation. This indicates that while the amount of O₂ consumed by the sediment increased considerably in response to oxygenation, enough O₂ was supplied by the HOx to counteract this increased demand and prevent O₂ depletion within the water column. Model results by Singleton et al. (unpubl.) further validated that HOx can be successfully operated to minimize the influence of sediment O₂ uptake. Thus, as long as HOx-induced increases in J₀₂ are properly accounted for, our results support that HOx effectively replenish O₂ in thermally stratified water-supply reservoirs such as CCR (Beutel 2003; McGinnis et al. 2004). Furthermore, the sediment oxic zone was shown to be significantly enhanced by oxygenation both in the near field and mid-reservoir, thereby facilitating decreased sediment-water flux to the water column. By maintaining oxic conditions in the upper ~1-2 mm of sediment, soluble Fe and Mn fluxes from the sediment to the hypolimnion were suppressed (Ch. 5; also supported by Jørgensen and Boudreau 2001) and total and soluble metal concentrations in the source water were significantly decreased (Gantzer et al. 2009b).
In summary, J_{O_2} and sediment O_2 availability were found to be directly influenced by HOx operations in CCR, particularly at low to moderately high flow rates (up to ~ 50 m3 h$^{-1}$). Reduced J_{O_2} was observed at higher flow rates which may be attributed to temporal dynamics of the reservoir, a shift from transport-limited to substrate-limited sediment O_2 uptake, and/or sediment resuspension. Sediment resuspension effects could be reduced in future systems by elevating the diffuser lines to a greater height above the sediment. The sediment oxic zone (as characterized by z_{max}) was substantially enhanced by HOx operations both in the near field and mid-reservoir, thus supporting the suppression of reduced chemical species to the water column. Although HOx operation resulted in both elevated near-sediment O_2 and turbulence levels, sediment O_2 uptake was found to be more strongly correlated to levels of near-sediment mixing than to O_2 immediately overlying the sediment. Thus, regardless of hypolimnetic O_2 levels, physical transport of the oxygenated water to the sediment surface governed sediment O_2 availability (as also shown by Brand et al. (2009) and Bryant et al. (2010)). Near-sediment BBL mixing (as characterized by current velocity and estimated ε) was found to vary in direct response to HOx operations, while wind-forced mixing effects appeared negligible. The influence of HOx on sediment O_2 availability was emphasized by the CCR system response to turning the HOx off for ~ 48 h. As δ_{DBL} rapidly increased in the absence of near-sediment mixing and C_{SWI} decreased to negligible levels, J_{O_2} dropped to zero and the sediment became anoxic. After turning the HOx back on, it took ~ 1 week for oxic sediment conditions to re-establish. Proximity to the HOx strongly influenced both how quickly the sediment-water vertical O_2 distribution was restored and its long-term stability.

This work emphasizes the viability of using HOx to maintain an established sediment oxic zone and the importance of taking HOx-induced increases in J_{O_2} into account when designing and operating HOx systems. Understanding how variations in O_2 and turbulence levels affect sediment-water fluxes is crucial for accurately quantifying J_{O_2}, optimizing water quality, and effectively managing lakes and reservoirs. By evaluating the influence of HOx on sediment O_2 dynamics at a reservoir-wide scale, our results will contribute to successful HOx operations facilitating both elevated source water O_2 levels and an oxic SWI for suppression of reduced chemical fluxes. Furthermore, while this study focused on HOx-induced changes in O_2
and turbulence, variation in these parameters is frequently induced naturally (e.g., via fall
overturn (Ch. 5), wind-induced seiching (Bryant et al. 2010; Ch. 2), and hydraulic inputs during
storm events). Therefore, results should also be applicable on a much broader scale.

4.6 Acknowledgements

The authors thank Elizabeth Rumsey, Kevin Elam, and the staff at Western Virginia
Water Authority who offered invaluable assistance in the field and with laboratory analyses. We
also thank Daniel McGinnis and Peter Berg for discussion and advice on data interpretation.

We acknowledge financial support from the National Science Foundation (NSF IGERT
Program) and the Western Virginia Water Authority. The research described in this paper was
also partially funded by the United States Environmental Protection Agency (EPA) under the
Science to Achieve Results (STAR) Graduate Fellowship Program. EPA has not officially
endorsed this publication and the views expressed herein may not reflect the views of the EPA.

4.7 References

Arega, F., and J. H. W. Lee. 2005. Diffusional mass transfer at sediment-water interface of
Beutel, M. W. 2003. Hypolimnetic anoxia and sediment oxygen demand in California drinking
Bouldin, D. R. 1968. Models for describing the diffusion of oxygen and other mobile
constituents across the mud-water interface. J. Ecol. 56: 77-87.
Brand, A., C. Dinkel, and B. Wehrli. 2009. Influence of the diffusive boundary layer on the
solute dynamics in the sediments of a seiche-driven lake: A model study. J. Geophys.

http://www2.dmu.dk/LakeandEstuarineEcology/nice/NICE_handbook.pdf

Table 4.1. Average results for sediment oxygen uptake rate (J_{O2}), dissolved oxygen (O_2) at the sediment-water interface (C_{SWI}), and sediment oxic zone depth (z_{max}) used for correlations between hypolimnetic oxygenation system (HOx) flow rate and J_{O2} (Fig. 4.8) and z_{max} (Fig. 4.10). Average values are based on in situ O_2 microprofile data from 2007-2008. Full (non-averaged) data set for J_{O2} and C_{SWI} comparison shown in Fig. 4.9a. Standard deviations based on an assumed normal distribution.

<table>
<thead>
<tr>
<th></th>
<th>J_{O2}</th>
<th>C_{SWI}</th>
<th>z_{max}</th>
<th>Flow</th>
<th>n samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mmol m$^{-2}$ d$^{-1}$)</td>
<td>(μmol L$^{-1}$)</td>
<td>(mm)</td>
<td>(m3 h$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>mid-reservoir (C3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4.6 ± 0.9</td>
<td>25 ± 10</td>
<td>0.4 ± 0.1</td>
<td>25</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12.5 ± 7.3</td>
<td>85 ± 25</td>
<td>1.2 ± 0.6</td>
<td>51</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>10.2 ± 2.9</td>
<td>140 ± 29</td>
<td>2.0 ± 0.7</td>
<td>68</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5.8 ± 0.9</td>
<td>76 ± 7</td>
<td>1.5 ± 0.4</td>
<td>85</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>near field (CVCB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 ± 0.0</td>
<td>0 ± 0</td>
<td>0.0 ± 0.0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>38.4 ± 27.0</td>
<td>68 ± 12</td>
<td>0.5 ± 0.1</td>
<td>25</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>19.6 ± 7.5</td>
<td>82 ± 62</td>
<td>0.7 ± 0.4</td>
<td>51</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6.1 ± 0.9</td>
<td>75 ± 7</td>
<td>1.0 ± 0.7</td>
<td>68</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3.9 ± 0.6</td>
<td>43 ± 54</td>
<td>1.5 ± 1.1</td>
<td>85</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

(1) In order to prevent bias from the continuous profiling during the 2008 week-long campaigns, bi-daily averages from these campaigns were used to calculate average values. Two profiles were typically collected on monthly sampling dates as well. Data obtained during the transition period after the HOx was turned back on (to 51 m3 h$^{-1}$) but prior to when the vertical O_2 distribution was re-established are also excluded from average J_{O2} estimates as these data are not representative of normal operating conditions.
Table 4.2. Spatial variation in average J_{O_2} and areal sediment O_2 consumption rate (R_{O_2a}) during summer 2008. The near field is characterized by CVCB data, the mid-reservoir region by C3 data, and the back region by CR data.

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>$J_{O_2}^{(1)}$ (mmol m$^{-2}$ d$^{-1}$)</th>
<th>$R_{O_2a}^{(1)}$ (mmol m$^{-2}$ d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVCB</td>
<td>6/08</td>
<td>9.7</td>
<td>10.6</td>
</tr>
<tr>
<td>CVCB</td>
<td>7/08</td>
<td>18.1</td>
<td>16.4</td>
</tr>
<tr>
<td>CVCB</td>
<td>8/08</td>
<td>26.8</td>
<td>21.2</td>
</tr>
<tr>
<td>CVCB</td>
<td>9/08</td>
<td>4.4</td>
<td>4.1</td>
</tr>
<tr>
<td>C3</td>
<td>6/08</td>
<td>4.6</td>
<td>3.8</td>
</tr>
<tr>
<td>C3</td>
<td>7/08</td>
<td>24.0</td>
<td>17.9</td>
</tr>
<tr>
<td>C3</td>
<td>8/08</td>
<td>9.0</td>
<td>8.1</td>
</tr>
<tr>
<td>C3</td>
<td>9/08</td>
<td>16.1</td>
<td>14.4</td>
</tr>
<tr>
<td>CR</td>
<td>6/08</td>
<td>6.5</td>
<td>6.1</td>
</tr>
<tr>
<td>CR</td>
<td>7/08</td>
<td>4.4</td>
<td>2.5</td>
</tr>
<tr>
<td>CR</td>
<td>8/08</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>CR</td>
<td>9/08</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$^{(1)}$Minor deviation in J_{O_2} (estimated via Eq. 4.1) and PROFILE-estimated R_{O_2a} values is most likely due to methodological differences (Ch. 3) rather than an indication of proximity to steady-state.
Figure 4.1. Map of Carvin’s Cove Reservoir (CCR) showing sampling sites (near-field locations CC and CVCB; central, mid-reservoir locations CE, C1, C2, and C3; back-reservoir location CR) and linear bubble-plume hypolimnetic oxygenation system (HOx).
Figure 4.2. Variations in oxygen flow during CCR H0x operations in 2007 and 2008.
Figure 4.3. Summary of in situ dissolved oxygen (O₂) profile data obtained at the sediment-water interface (SWI) with the MP4 microprofiler during the August 2008 campaign at C3. The HOx was turned off on August 19 (~14:00) and turned back on ~48 h later on August 21 (~14:00). Following the halt of HOx operations, O₂ rapidly depleted from the sediment and the overlying water column (a). An oxic vertical O₂ distribution was not re-established until August 29 (b), 8 days after the HOx was turned back on.
Figure 4.4. Contour plots of O_2 levels at the SWI (a; MP4 O_2 microsensor data), in the water overlying the sediment (b; MP4 O_2 microsensor data), and in the hypolimnion (c; CTD (conductivity-temperature-O_2 as a function of depth) profile data). Shaded region indicates period when HOx turned off. While O_2 is rapidly depleted from the sediment and water immediately above the SWI (a) after the HOx was turned off, O_2 levels were only minimally affected at ~8 cm above the sediment (b) and remained relatively constant in the bulk hypolimnion (c). In (a) and (b), depth indicates distance above (+) or below (-) the SWI, which is indicated by the dashed line. Depth in (c) indicates distance below the water surface.
Figure 4.5. Variations in O₂ levels at the SWI (C_{SWI}), at 5 cm above the SWI (C₅), and within the sediment (as characterized by sediment oxic zone depth z_{max}) in response to turning off the HOx. Similar trends are observed in data from both the August 2008 campaign at C3 (a) and also the June 2008 campaign at CVCB (b). During the period of zero flow when the HOx was not in operation, O₂ levels dropped both at 5 cm above and directly at the SWI and the sediment went anoxic as O₂ was depleted. After HOx operations resumed, it took ~5 days for the vertical O₂ distribution to re-establish near the HOx at CVCB and ~8 days mid-reservoir at C3.
Figure 4.6. Current velocity time series (as measured via acoustic Doppler current profiler; ADCP) in relation to HOx flow during the August 2008 C3 campaign (a). Near-sediment velocities (+1.5 m above the sediment) as well as velocities in the bulk hypolimnion (+3 m above the sediment) and epilimnion (-5 m below the water surface) are shown. Increased near-sediment velocity observed at the end of the campaign correlates with the re-established vertical O₂ distribution shown in Fig. 4.3b. Similar results were obtained during the June 2008 CVCB campaign (b). The magnitude and degree of variation in near-sediment velocities increased after HOx operations were resumed after the period it was turned off (b; designated in red).
Figure 4.7. The response of J_{O2} and the vertical O_2 distribution at the SWI (a; as characterized by diffusive boundary layer thickness (δ_{DBL}) and z_{max}) to turning off the HOx corresponds directly to variations in near-sediment mixing (b) as characterized by current velocity (obtained via ADCP) and turbulence (defined by energy dissipation rate ε, which was estimated as a function of water-side δ_{DBL}). Results shown are based on in situ data obtained during the August 2008 campaign at C3; similar results were obtained from the June CVCB campaign. The analogous behavior of temperature at the SWI (b; obtained via MP4 temperature microsensor) further indicates that near-sediment mixing was significantly influenced by HOx operations.
Figure 4.8. Variation in J_{O2} as a function of HOx flow rate. Data shown are average values based on O$_2$ microprofile data from 2007-2008 (Table 4.1). CVCB data for flow = 25 m3 h$^{-1}$ were considered outliers (supported by J_{O2} standard deviation data in Table 4.1; including outlier data decreased CVCB R^2 value to 0.61).
Figure 4.9. Correlation between J_{O_2} and both C_{SWI} (a) and C_5 (b). Results shown based on full O_2 microprofile data set from 2007-2008 (corresponding averages provided in Table 4.1).
Figure 4.10. Variation in z_{max} as a function of HOx flow rate. The sediment oxic zone is shown to increase in direct response to elevated HOx flow at both locations. Data shown are average values based on O$_2$ microprofile data from 2007-2008 (Table 4.1).
Chapter 5 – Biogeochemical cycling of iron and manganese at the sediment-water interface in response to hypolimnetic oxygenation

Bryant, Lee D., Paul A. Gantzer*, John C. Little
Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, 24060, USA.
*Now at: Gantzer Water Resources LLC, Kirkland, Washington, 98084, USA.

To be submitted: Water Research

5.1 Abstract

One of the primary goals of hypolimnetic oxygenation systems (HOx) from a drinking-water perspective is to suppress sediment-water fluxes of reduced chemical species (e.g., iron (Fe) and manganese (Mn)) by replenishing dissolved oxygen (O₂) in the hypolimnion. While it has been established that HOx increase sediment O₂ uptake rates (J_{O₂}) via elevated near-sediment O₂ and turbulence levels, the influence of HOx on sediment-water fluxes of Fe and Mn (J_{Fe} and J_{Mn}, respectively) has not been comprehensively evaluated. We therefore performed a study focused on how HOx operations affect biogeochemical cycling of Fe and Mn. This study was based on O₂, Fe, and Mn data collected primarily in situ characterizing both the sediment and water column in a drinking-water-supply reservoir equipped with an HOx.

While soluble Fe was found to be controlled relatively easily as long as minimal levels of O₂ remained near the sediment, soluble Mn levels in the lower hypolimnion increased significantly when the HOx was not in operation and the upper sediment became anoxic. However, continuous HOx operations maintained elevated near-sediment O₂ levels and an oxic sediment-water interface which facilitated Fe and Mn suppression within the benthic region. Although J_{Fe} and J_{Mn} were enhanced by HOx operations, results indicate biogeochemical cycling supported by elevated O₂ in the sediment and overlying water prevented released metals from reaching the bulk water. Increased amounts of Fe and Mn in the bulk sediment resulting from HOx-enhanced sedimentation further support benthic metal retention. These results emphasize that O₂ allocated for the oxidation of enhanced fluxes of reduced species and subsequent incorporation of these species into the sediment must be taken into account for successful HOx operation. Results of this study should be of benefit to managers of HOx-equipped lake and reservoir systems for the optimization of HOx operations and source-water quality.
5.2 Introduction

Hypolimnetic oxygenation systems (HOx) are used by drinking water and hydropower utilities, as well as other lake and reservoir managers, to replenish dissolved oxygen (O\textsubscript{2}) while preserving stratification (Wüest et al. 1992; Singleton and Little 2006; Gantzer et al. 2009a). Increasing hypolimnetic O\textsubscript{2} while maintaining stratification in drinking water reservoirs is desirable because this allows the oxygenated hypolimnetic water (which is relatively free of algal matter and other debris as compared to the epilimnion) to be used as source water (Gafsi et al. 2009). One of the primary goals of oxygenation from a drinking-water perspective is to improve source water quality by preventing hypolimnetic anoxia and the subsequent release of reduced chemical species (e.g., iron (Fe) and manganese (Mn)) from the sediment into the water column (Beutel 2003; Moore 2003). It has been established that oxygenation can significantly decrease soluble Fe and Mn levels in the hypolimnion (Chiswell and Zaw 1991; Gantzer et al. 2009b) as the reduced metals are oxidized by increased hypolimnetic O\textsubscript{2} and precipitate to the sediment. However, O\textsubscript{2} dynamics and biogeochemical transformation processes are highly variable at the sediment-water interface (SWI) due to the extremely steep gradients in chemical, physical, and microbial properties that occur in this region (Santschi 1990). Thus, as increased levels of oxide precipitates reach the sediment, potentially significant changes in the sediment O\textsubscript{2} uptake rate (J\textsubscript{O2}) and metal fluxes at the SWI may occur (Jørgensen and Revsbech 1985; Zhang et al. 1999). As a result, the influence of HOx on sediment-water fluxes of reduced species is not well understood.

Conceptually, HOx-induced increases in turbulence and near-sediment O\textsubscript{2} and metal concentrations will have a direct effect on sediment-water diffusive flux. Mass transport of soluble species at the SWI is governed by diffusion through the diffusive boundary layer (DBL), a mm-scale laminar layer immediately above the sediment (Jørgensen and Revsbech 1985). Diffusive flux at the SWI is therefore controlled by the concentration gradient (\partial C/\partial z) within the DBL, which is in turn regulated by turbulence in the overlying water of the bottom boundary layer (BBL) and DBL thickness (\delta\textsubscript{DBL}). Natural variation in turbulence has been shown to have a significant effect on \delta\textsubscript{DBL} and sediment-water fluxes (Lorke et al. 2003; Brand et al. 2009; Bryant et al. 2010; Ch.2).
While previous work has shown that oxygenation increases J_{O_2} via elevated near-sediment O_2 and turbulence levels (Moore 2003; Gafsi et al. 2009), the influence of HOx on sediment-water fluxes of Fe and Mn (J_{Fe} and J_{Mn}, respectively) has not been fully established. Some studies support the use of HOx for sediment-water flux suppression (Beutel 2003; Beutel et al. 2008); however, it has also been shown that technical lake management procedures such as oxygenation can fail to effectively decrease the release of reduced species from the sediment to the hypolimnion in some systems (Gächter and Wehrli 1998; A. Matzinger, unpubl.). Furthermore, much of the work that has been done on using oxygenation to improve water quality has largely focused on the water column (Chiswell and Zaw 1991; Matthews et al. 2006; Gantzer et al. 2009b) and many of the sediment-water flux studies that have been performed have been largely theoretical or laboratory-based (Moore et al. 1996; Beutel 2003). We therefore performed a study that assessed how HOx operations affect J_{Fe}, J_{Mn}, and resulting water quality. Our study was based on O$_2$, Fe, and Mn data collected primarily in situ characterizing both the sediment and water column in a drinking-water-supply reservoir equipped with an HOx. By evaluating the vertical distribution of O$_2$, Fe, and Mn at the SWI, the incorporation of Fe and Mn into the bulk sediment, and subsequent source water quality as a function of HOx operation, we aim to promote greater understanding of (1) biogeochemical cycling at the SWI and (2) how to successfully manage HOx operation for the suppression of reduced chemical species in the benthic region.

5.3 Materials and methods

5.3.1 Study site and instrumentation – Our study focused on Carvin’s Cove Reservoir (CCR), a drinking-water-supply reservoir managed by the Western Virginia Water Authority (WVWA) in Virginia, USA (Fig. 5.1). CCR is eutrophic and has a maximum depth of 23 m, width of ~600 m, and length of ~8000 m. A linear bubble-plume HOx (Mobley et al. 1997; Singleton et al. 2007) was installed by WVWA in CCR in 2005 and since that time ongoing field campaigns have been performed to monitor performance (Ch. 4; Gantzer et al. 2009a; Gantzer et al. 2009b). The CCR HOx is comprised of two parallel lines of porous tubing (each individual line consists of two tubes that are each ~1 cm in diameter and 625 m in length) located in the deepest section of the reservoir near the WVWA treatment plant outtake (Fig. 5.1).
To evaluate sediment-water fluxes in CCR, a network of in situ and laboratory measurements was obtained from 2005-2008. Focused field sampling typically lasted from March (at the start of stratification) through November (post fall turnover). Samples were obtained primarily from sites near the HOx (CC and CVCB), mid-reservoir (C3), and in the back region (CR) to characterize the influence of the HOx at a reservoir-wide scale. O2 microprofiles of the SWI were obtained using both an in situ microprofiler and microsensor profiling of sediment cores in the laboratory. In-situ porewater analyzers (“peepers”; Hesslein 1976) were used to obtain soluble Fe and Mn profile data at the SWI. Bulk sediment samples were analyzed for total Fe, total Mn, and total organic carbon (TOC). Water samples from different elevations in the water column and also from water overlying the sediment of core samples was used to track changes in total and soluble Fe and Mn. Further details on primary measurements are provided below and in Ch. 4. Some additional data were collected for background information and companion studies. Water column profiles were obtained using a CTD (Conductivity-Temperature-O2 as a function of Depth) probe to track water column O2 levels and density stratification as a function of temperature. During the 2006 season, sediment samples from sediment cores were also routinely preserved for microbial analyses (Ch. 6).

5.3.1.1 O2 profiles at the SWI – During 2005 and 2006, O2 profiles at the SWI were measured via microsensor profiling of sediment cores. Sediment cores were obtained using a ball corer (Uwitec) with a core tube diameter of 90 mm and height of 120 cm. Following extraction, sediment cores were kept in the dark and on ice as they were transported to the laboratory and were typically profiled within ~1 h of extraction. Sediment cores were cut to an appropriate height (~20 cm) for profiling using a Uwitec core cutter. Sediment cores remained largely undisturbed during the extraction and cutting process and only undisturbed cores were profiled. Sediment cores were profiled using Clark-type O2 microsensors (OX-100; Unisense A/S), which have an internal reference and a guard cathode. OX-100 microsensors have an extremely small tip size and depth resolution (100 μm), rapid response time (90% response in < 8 s), and negligible stirring sensitivity. The microsensors were manually controlled by a micromanipulator (M3301R; World Precision Instruments, Inc.) and were supported by a high-sensitivity picoammeter (PA2000; Unisense A/S). Mild mixing of the core water column was maintained during profiling. Cores were profiled in duplicate at 1-mm depth resolution; for each
profile, three measurements were obtained at each depth. For each core, a linear calibration of the microsensor was obtained using O\textsubscript{2} concentrations in the overlying core water column, as determined via Winkler titration, and in the anoxic sediment (Røy et al. 2004).

During 2007 and 2008, an autonomous microprofiler (MP4; Unisense A/S) equipped with microsensors (O\textsubscript{2} (OX-100), temperature (TP-100), and pH (PH-100); Unisense A/S) was used to obtain microprofiles at the SWI in situ. The MP4 OX-100 has the same characteristics as described for the laboratory microsensor. The thermo-coupled TP-100 has a spatial resolution of \(~200 \mu m\), resolution of \(\pm 0.1 \mu V\) per \(^\circ C\), and 90% response time of \(< 3 s\). The pH-100 is a miniaturized conventional pH electrode with a spatial resolution of \(~200 \mu m\), detection limit of \(\pm 0.1\) pH unit, and 90% response time of \(< 20 s\). The pH microsensor was used solely to obtain single-point measurements and not profile data; hence the longer response time did not affect speed of profiling. Profiles were collected in duplicate at each sample site (excluding multi-day campaigns in 2008 where profiles were measured continuously), with a full profile obtained \(~every 50 min\). The profile sequence was as follows: 10-mm resolution from 10 cm to 1 cm above the SWI, 1-mm resolution from 1 cm to 0.5 cm above the SWI, 0.1-mm resolution from 0.5 cm above the SWI to 0.5 cm below the SWI. Ten measurements were typically taken at each depth (during the multi-day campaigns only three measurements were obtained per depth due to data storage limitations during overnight deployments). Following a pause between measurements for equilibration at each depth, microsensor data were collected at a rate of 1 Hz.

Sediment core O\textsubscript{2} profiles were used to quantify HO\textsubscript{x}-induced variations in the vertical O\textsubscript{2} distribution and J\textsubscript{O2} prior to summer 2007 (when the MP4 microprofiler was acquired). However, in addition to issues with sediment disturbance during sampling, core profiling is not ideal because the sample does not reflect in situ turbulence, which is known to significantly influence sediment O\textsubscript{2} uptake (Lorke et al. 2003; Bryant et al. 2010; Ch. 2). To assess how in situ and sediment core data compared, an evaluation of J\textsubscript{O2} estimates based on laboratory sediment core and in situ MP4 microprofile data was performed during summer 2007. While O\textsubscript{2} profiles from both methods were visually similar and overall trends in J\textsubscript{O2} were well preserved, core-based estimates of J\textsubscript{O2} were on average 50\% (\(\pm 25\%\); Appendix B.1) less than MP4 estimates. Although the core water column was continually mixed during profiles, decreased J\textsubscript{O2} estimates based on sediment core data were most likely a result of insufficient turbulence (as compared to in situ) within the core tube and subsequently increased \(\delta\text{DBL}\). Because sediment
core J_{O2} estimates were consistently ~50% less than in situ estimates, a correction factor of 2.0 was applied to sediment core J_{O2} data from 2005-2006.

During sediment core profiling, the SWI location was easily identified visually. In the absence of a video camera during in situ microprofiling, the SWI location was determined via both visual interpretations of O$_2$ profile data (based on identifying linear DBL regions and kinks in the profile due to porosity differences between the sediment and the water column) and using standard deviations of O$_2$ temporal fluctuations obtained at each sampling-depth increment (Bryant et al. 2010; Ch. 2). Standard deviations of solute concentration measurements decrease as the sensor approaches the sediment due to decreased turbulent diffusion near the SWI and these variances may be used to determine SWI location (Müller et al. 2002).

5.3.1.2 Fe and Mn profiles at the SWI – Peeper dialysis porewater samplers were used to obtain in situ soluble Fe and Mn profile data at the SWI. The peepers were constructed following Hesslein (1976), Urban et al. (1997), and Lewandowski et al. (2002). Each peeper consisted of two polypropylene sheets (a 13-mm-thick base plate and a 3-mm-thick cover plate) and a sheet of Millipore 0.45-μm HV Durapore membrane; total peeper dimensions were 80 cm in height and 32 cm in width. Stainless steel fasteners were used to secure the two plates and membrane sheet together. Each peeper had a single column of forty sampling chambers (20-mL volume) with a vertical profile resolution of 1 cm. PEEPERS were filled with distilled water during construction and then kept in a nitrogen (N$_2$)-bubbling tank for deoxygenation until deployment. Immediately prior to deployment, peepers were inserted into an aluminum frame which, upon deployment (typically within ~1-2 minutes of removal from the deoxygenation tank), positioned the peeper vertically into the sediment so that half of the peeper chambers were exposed to the near-sediment water column and half of the chambers were exposed to sediment porewater. The frames were designed to prevent the aluminum from influencing peeper measurements and, based on data obtained from peepers deployed with and without the frame, the frames did not affect measurements. PEEPERS were deployed in duplicate for 2-4 weeks at a time (to allow for the peeper to come to equilibrium with in situ water) at locations CC (2006), CVCB (2007-2008), CE (2007-2008), and CR (2008). Immediately upon retrieval, water samples were obtained via sterilized pipettes from each peeper chamber, acidified, and analyzed for metals via inductively-coupled plasma (ICP) spectroscopy (Clesceri et al. 1998).
Concentrations of Fe and Mn in near-sediment water and porewater were characterized by soluble (<0.45-μm) peeper data which represents both the reduced, dissolved (<0.20-μm) and oxidized, colloidal (<0.45-μm) forms of these metals (Lienemann et al. 1999; Thompson et al. 2006). To evaluate how much of our soluble Fe samples were in the reduced Fe$^{2+}$ form, ferrozine analyses (Stookey 1970) were performed on peeper samples from the 2006 field campaign.

5.3.1.3 Water sample measurements – Because peeper data could only be obtained on a bi-weekly basis, near-sediment water samples were obtained from sediment cores to increase measurement frequency for metals data. Samples were collected at ~5 cm above the sediment in the water column of core samples using a syringe with attached tubing. Water samples were transferred directly to sterile plastic bottles. Immediately upon reaching the WVWA laboratory (typically within ~1-2 h of sampling), samples for total metal analyses were acidified and samples for soluble metals were filtered through 0.45-μm Millipore filter paper and then acidified. Samples were evaluated for total and soluble Fe and Mn via ICP (Clesceri et al. 1998). Samples from the CCR hypolimnion were collected at 3m-increments using a Kemmerer bottle and analyzed for total and soluble Fe and Mn via ICP (Clesceri et al. 1998). Total metal samples were transferred directly from the Kemmerer bottle to pre-acidified plastic bottles. Soluble metal samples were filtered through 0.45-μm Millipore filter paper prior to being transferred to pre-acidified plastic bottles.

5.3.1.4 Bulk sediment measurements – Bulk sediment samples were collected in the field from the top ~2 cm of sediment core samples and transferred directly into sterile glass containers. Samples were analyzed following standard methods for total solids (SM2540B; Greenberg et al. 1992), total Fe and Mn (SW6010B; EPA 1996), and TOC (Lloyd Kahn; EPA 1988).

5.3.2 Flux analyses – O$_2$ microprofile and peeper profile data were used to estimate J_{O_2}, J_{Fe}, and J_{Mn}, respectively. While chemical and biological processes may influence sediment-water metal fluxes, solute flux models of the SWI are typically based on diffusive transport (Achman et
Diffusive flux (J_i) for species (i) O2, Mn, and Fe was evaluated using Fick’s first law of diffusion (Rasmussen and Jørgensen 1992; Higashino et al. 2004):

$$J_i = -\phi \frac{D_{si}}{\partial C}{\partial z}_{sed} = -D_i \frac{\partial C}{\partial z}{\partial z}_{water} = D_i \frac{C_{bulk} - C_{SWI}}{\delta_{DBL}}$$ [mmol m$^{-2}$ d$^{-1}$] \ (5.1)

where ϕ is sediment porosity (m3 voids m$^{-3}$ total volume), D_{si} is the species-dependent diffusion coefficient in sediment (m2 s$^{-1}$), and D_i is the species-dependent diffusion coefficient in water (m2 s$^{-1}$). C indicates the respective species concentration, $\partial C/\partial z$ is the linear concentration gradient in the DBL immediately above or below the SWI (μmol m$^{-4}$), C_{bulk} is the concentration in the bulk BBL (μmol L$^{-1}$), and C_{SWI} is the concentration at the SWI (μmol L$^{-1}$), as shown in Fig. 2.1a of Ch. 2. Diffusive transport is hence defined in the sediment by the second term in Eq. 5.1 and in the water by the third and fourth terms. Water-side profile data is frequently more difficult to evaluate due to rapid turbulence-induced variation in δ_{DBL} (Bryant et al. 2010; Ch. 2). Additionally, measuring fluxes representative of in situ conditions is problematic based on sediment core profiling where turbulence is controlled. Because sediment-side data is less directly influenced by variations in turbulence (Ch. 3), J_i was evaluated from porewater data using the second term in Eq. 5.1.

Sediment cores from the primary sampling locations (Fig. 5.1) were evaluated for ϕ following Dalsgaard et al. (2000) and ϕ values of 0.95-0.97 were obtained. Values for D_{O2} were based on $D_{O2} = 1.97 \times 10^{-9}$ m2 s$^{-1}$ at 20°C (Arenga and Lee 2005). The simplifying assumption was made for metal flux calculations that soluble Fe and Mn peeper data were completely in the dissolved, reduced forms of Fe$^{2+}$ and Mn$^{2+}$. This assumption may have resulted in slightly overestimated J_{Fe} and J_{Mn} values due to D_i and colloidal transport effects (Achman et al. 1996); however, its validity is supported by ferrozine results showing that typically ~70% of near-surface soluble Fe was Fe$^{2+}$. Due to the close pairing of Fe-Mn redox kinetics (Santschi et al. 1990; Fossing et al. 2004; Duckworth et al. 2009) and the ease with which oxidized Mn reduces relative to Fe (Davison 1985), an even greater percentage of Mn was likely in the reduced form in the largely anoxic upper cm of sediment (excluding the ~1-2 mm oxic zone). Values for metal D_i were hence based on $D_{Fe^{2+}} = 7.19 \times 10^{-10}$ m2 s$^{-1}$ and $D_{Mn^{2+}} = 6.88 \times 10^{-10}$ m2 s$^{-1}$ at 25°C (Li and Gregory 1974). All D_i and corresponding D_{si} values were corrected for temperature using the
Stokes-Einstein relationship (Li and Gregory 1974). D_{si} was defined as $D_{si} = \phi D_{i}$ to correct for sediment tortuosity as a function of ϕ (Berg et al. 1998; Glud 2008; Ch. 3).

The temporal change in O$_2$ concentration ($\partial C/\partial t$) was evaluated for our series of in situ O$_2$ profiles by comparing profiles immediately before and after one another and calculating the rate of change in O$_2$ at each depth. $\partial C/\partial t$ was found to be on average <5% of J_{O2}, establishing that our profiles were at quasi-steady state and that turbulence conditions in CCR were changing slowly relative to the duration of an O$_2$ microprofile. Quasi-steady-state conditions were assumed for peeper data based on the extended deployment period.

5.4 Results and Discussion

5.4.1 Sediment-water vertical Fe and Mn distribution – Soluble Fe and Mn peeper data from the 2007 season are shown in Fig. 5.2. The distinct peaks near the SWI are indicative of the anoxic-oxic boundary where active redox cycling between precipitated oxides and reduced soluble species occurs (Davison 1982; Belzile et al. 1996). Sediment Fe and Mn levels steadily increased as the season progressed; hence, as Fe and Mn precipitated out of the oxygenated water column, these particles likely were transformed to soluble Fe and Mn as they reached the more reducing near-sediment environment. Additionally, enhanced oxidation of sediment organic matter due to elevated near-sediment O$_2$ may have contributed to reductive remobilization of Fe and Mn (Zhang et al. 1999). While CCR soluble Mn and Fe porewater concentrations were relatively high in comparison to other freshwater studies (Urban et al. 1997; Schaller et al. 1997; Schaller and Wehrli 1997), they are on the same order of magnitude and regional geology is known to have high levels of Fe and Mn (Stose et al. 1919, Carpenter et al. 1971; Mussman et al. 1986).

5.4.2 Fe and Mn response near the SWI – Contour plots based on a Kriging interpolation scheme and peeper data at site CVCB (directly beside the HOx; Fig. 5.1) in correlation with HOx flow during 2006-2008 are shown in Fig. 5.3. Near-sediment soluble Fe levels remained consistently low during HOx operations (Fig. 5.3a-c). Increased Fe is observed up to ~10 cm in the water column for a brief period following a reduction in HOx flow in 2007 (Fig. 5.3b). Near-surface porewater Fe levels also slightly increased when the HOx was turned off for extended
periods during June and November 2006 (Fig. 5.3a) and fall 2007 (Fig. 5.3b). Nevertheless, Fe tends to remain in the oxidized form even under reducing conditions (Davison 1993; Crittenden et al. 2005) and soluble Fe levels were only mildly affected even during periods when the sediment went anoxic after the HOx was turned off. Conversely, soluble Mn levels at the SWI varied significantly in response to changes in HOx operation. As shown in Fig. 5.3d, when the HOx was turned off for one month in 2006, soluble Mn levels both in the water overlying the sediment and in sediment porewater increased substantially. Similar results were obtained during 2007 in response to decreased HOx flow (Fig. 5.3e). Mn reduces much more easily than Fe (Balzer 1982; Davison 1985), which most likely explains the Mn response observed during periods when the HOx was turned off.

Although soluble Fe and Mn levels increased when the HOx was turned off in 2006-2007 (Fig. 5.3a-b, d-e), near-sediment concentrations of both metals remained low during continuous HOx operation in 2008 (Fig. 5.3c, 5.3f). Similar results were also observed mid-reservoir at C3 (Appendix B.2). These results indicate that Fe and Mn were oxidized in the water column and incorporated into the sediment during oxygenation (Jørgensen and Boudreau 2001). While Fe is easily oxidized in oxic environments, chemical oxidation of Mn is more difficult at the pH of natural waters, which is typically 7 – 9, and depends largely on microbial and/or surface-catalyzed reactions under such conditions (Santschi et al. 1990; Belzile et al. 1996; Crittenden et al. 2005). MP4 microsensor pH data confirmed that pH remained ~8 – 9 at the SWI in CCR and a correlation between Mn and pH at the SWI was not found (data not shown). Therefore, Mn oxidation and decreases in soluble Mn (Fig. 5.3; Appendix B.2) were likely controlled by biological processes (Nealson et al. 1988; Jørgensen and Boudreau 2001) and/or adsorption onto particulate matter (Santschi et al. 1990). The influence of sediment microbes on Fe and Mn dynamics in CCR is further explored in Ch. 6.

In addition to peeper data, core-water data provided independent verification of HOx-induced variation in near-sediment metal concentrations. Both total and soluble Fe and Mn levels increased substantially during periods when HOx flow was reduced, particularly in regions most directly affected by the HOx (Fig. 5.4). Similar results were obtained during 2006 (Fig. 5.4) and 2008 (Appendix B.3). A strong response to turning the HOx off and a consistent fractionation of total and soluble Fe and Mn is observed. Excluding the periods when the HOx was turned off, metal concentrations remained relatively constant at all sampling locations. As
shown by Fig. 5.3 and 5.4, Mn levels were more affected by HOx operations than Fe. Additionally, while ~50% of total Fe was soluble, indicating a significant solid fraction, Mn remained almost completely soluble. The fact that Mn stayed predominantly soluble while Fe was largely in the solid form highlights the ease with which Fe remains oxidized under low O₂ conditions relative to Mn.

In Fig. 5.5, the relationship among near-sediment metal concentrations, O₂ at the SWI, and HOx flow is emphasized. After the HOx was turned off from 19-21 August 2008, SWI O₂ levels dropped to 0 μmol L⁻¹ for over a week until the vertical O₂ distribution was finally re-established (Ch. 4). A significant increase in total and soluble Fe and Mn is observed during this anoxic period (Fig. 5.5; full data set provided in Appendix B.3), which clearly reveals the controlling influence that HOx operations have on sediment O₂ availability and metal cycling near the SWI.

Although HOx-induced variation in metal concentrations was observed throughout the reservoir as indicated by data from CVCB (directly alongside the HOx; Fig. 5.3, 5.4a) and C3 (mid-reservoir; Fig. 5.4b, 5.5), the response was not uniform. As shown by Fig. 5.4c, near-sediment metal concentrations at C2 were relatively unaffected. While C3 is located farther away from the HOx than C2, it is also at a higher elevation and HOx plume detrainment in the C3 region may have been an influence (Fig. 5.1; Ch. 4). These results indicate that the influence of the HOx was at least partially dependent on reservoir bathmetry.

5.4.3 HOx-induced variation in J,O₂, J,Fe, and J,Mn – Overall, a strong correlation between J,O₂, J,Fe, and J,Mn was observed throughout the reservoir (Fig. 5.6). All three fluxes are shown to increase when the HOx was in operation and decrease when HOx flow was significantly reduced or halted for an extended period (e.g., November 2005 and June 2006 in Fig. 5.6a and September 2007 in Fig. 5.6a,b). Following an extended period of oxygenation, J,Mn peaked at 0.67 mmol m⁻² d⁻¹, with maximum J,Fe = 1.53 mmol m⁻² d⁻¹ and J,O₂ = 26.8 mmol m⁻² d⁻¹ at CC in August 2008 (Fig. 5.6a). When the HOx was turned off for one month in July 2007, fluxes dropped to minimum values of J,Mn = 0.34 mmol m⁻² d⁻¹, J,Fe = 0.40 mmol m⁻² d⁻¹, and J,O₂ = 0.0 mmol m⁻² d⁻¹. Estimates of J,Mn, J,Fe, and J,O₂ shown in Fig. 5.6 are comparable to values obtained from similar freshwater lake systems (Johnson et al. 1991; Belzile et al. 1996; Lorke et al. 2003).
While fluxes were influenced by whether or not the HOx was in operation, a relationship between metal flux and actual HOx flow rate is not evident, which may be attributed to the relatively small number of peeper samples obtained for each flow rate. An additional factor may have been that O\textsubscript{2} levels at the SWI typically remained relatively high regardless of flow rate during HOx operation (Ch. 4; Beutel 2003). Due to the complex biogeochemical controls on J\textsubscript{Fe} and especially J\textsubscript{Mn}, these fluxes were likely not as directly influenced by the actual HOx flow rate as long as sufficient sediment O\textsubscript{2} was available. An evaluation of our more extensive O\textsubscript{2} profile data set did reveal a correlation between flow rate and J\textsubscript{O2} at low to moderately high flow rates however (Ch. 4). J\textsubscript{Fe} is shown to correlate more directly with J\textsubscript{O2} than J\textsubscript{Mn}, as observed by Zaw and Chiswell (1999), which may be a function of redox kinetics (Bouldin 1986; Davison 1993).

As indicated by the different sign of J\textsubscript{O2} compared to J\textsubscript{Fe} and J\textsubscript{Mn} in Fig. 5.6, J\textsubscript{O2} represents the rate at which O\textsubscript{2} is transported into the sediment while J\textsubscript{Fe} and J\textsubscript{Mn} represent the rate at which Fe and Mn diffuse out of the sediment. BBL O\textsubscript{2} levels are typically much higher than in the sediment while porewater metal concentrations are significantly greater than in the water column. J\textsubscript{O2} into the sediment is hence increased by HOx operations due to elevated near-sediment O\textsubscript{2} levels and subsequently increased O\textsubscript{2} driving force through the DBL (Ch. 4). Concurrently, water-column levels of Fe and Mn are significantly reduced (Gantzer et al. 2009b) and sediment concentrations increased as the metals are oxidized and settle to the sediment. As evidenced by peeper profiles (Fig. 5.2) and corresponding J\textsubscript{Fe} and J\textsubscript{Mn} estimates (Fig. 5.6), HOx operation therefore also increased $\partial C/\partial z$ (albeit in the opposing direction of that for O\textsubscript{2}) for diffusive transport of Fe and Mn out of the sediment into the water column. As observed for J\textsubscript{O2} (Ch. 4), HOx-induced suppression of δDBL would have additionally enhanced J\textsubscript{Fe} and J\textsubscript{Mn} out of the sediment. Conversely, J\textsubscript{Fe} and J\textsubscript{Mn} decreased when the HOx was turned off which may be attributed to decreased $\partial C/\partial z$ as near-sediment soluble metals increased significantly (Fig. 5.3-5.5) and the DBL was no longer maintained (Bryant et al. 2010; Ch. 2; Ch. 4).

The release of Fe2+ and Mn2+ as the sediment became anoxic would contribute to observed decreases in J\textsubscript{O2} (Fig. 5.6) as these reduced metals were subsequently oxidized in the water column (Glud et al. 2007). Additionally, an initial increase in J\textsubscript{Fe} and J\textsubscript{Mn} very likely occurred immediately after HOx operations were halted and Fe and Mn were released as the sediment went anoxic (Fig. 5.5). The temporal scale of peeper measurements (two-week deployment period), however, did not facilitate capturing such rapid changes in flux.
5.4.4 Amount of \(J_{O2}\) allocated to \(J_{Fe}\) and \(J_{Mn}\) suppression – The percentage of \(J_{O2}\) used for the oxidation of released \(Fe^{2+}\) and \(Mn^{2+}\) was evaluated based on \(J_{Fe}\) and \(J_{Mn}\) estimates (Fig. 5.6) and stoichiometric relationships defined by Eq. 5.2 – 5.3 (Berg et al. 2003; Glud et al. 2007) following Adams et al. (1982).

\[
2Mn^{2+} + O_2 + 2H_2O \rightarrow 2MnO_2 + 4H^+ \quad [\mu mol\ L^{-1}] \quad (5.2)
\]

\[
4Fe^{2+} + O_2 + 6H_2O \rightarrow 4FeOOH + 8H^+ \quad [\mu mol\ L^{-1}] \quad (5.3)
\]

Using Eq. 5.2-5.3, \(J_{Fe}\) and \(J_{Mn}\) were converted to equivalent values of hypothetical \(J_{O2}\) (\(J_{O2-Fe}\) and \(J_{O2-Mn}\), respectively). As shown in Fig. 5.7 and Table 5.1, hypothetical \(J_{O2}\) based on total metal flux (\(J_{O2-T} = J_{O2-Fe} + J_{O2-Mn}\)) and also solely on \(Fe\) and \(Mn\) contributions (\(J_{O2-Fe}\) and \(J_{O2-Mn}\)) are compared to measured \(J_{O2}\) (Fig. 5.6). This approach is based purely on diffusive flux estimates and does not take into account \(Fe\) and \(Mn\) oxidation processes associated with surface-mediated reactions and/or microbial activity. Furthermore, because \(J_{Fe}\), \(J_{Mn}\), and the estimates of \(J_{O2-Fe}\) and \(J_{O2-Mn}\) were based on the assumption that soluble metals were in the reduced form, results may over-estimate the proportion of \(J_{O2}\) actually used for reduced metal oxidation. However, the influence of \(J_{Fe}\) and \(J_{Mn}\) on the overall \(O2\) balance should be preserved in the comparisons.

During periods of summer stratification, \(J_{O2-T}\) made up 10-15% of \(J_{O2}\), indicating that a moderate amount of total diffusive sediment \(O2\) uptake (as defined by \(J_{O2}\)) was devoted to oxidation of \(J_{Fe}\) and \(J_{Mn}\) near the SWI (Fig. 5.7; Table 5.1). During the winter period following turnover (indicated by blue rectangles in Fig. 5.7), the percent of \(J_{O2}\) used for reduced metal oxidation decreased to 1-2%. While \(J_{Fe}\) was found to be consistently higher than \(J_{Mn}\) (Fig. 5.6), a trend in \(J_{Fe}\) and \(J_{Mn}\) contributions to overall \(J_{O2-T}\) was not observed. Previous work has shown that the proportion of \(J_{O2}\) allocated to re-oxidation of reduced \(Fe\) and \(Mn\) was insignificant as compared to other reduced species such as nitrite, ammonium, and methane (Maerki et al. 2009; A. Matzinger, unpubl.). The fact that a measurable (up to 15%) amount of \(J_{O2}\) was estimated for \(J_{Fe}\) and \(J_{Mn}\) oxidation (and subsequent suppression from the hypolimnion) indicates the relatively substantial role \(Fe\) and \(Mn\) play in the CCR redox cycle. Based on the traditional sequence of
redox reactions, denitrification and subsequent N₂ release occurs prior to Fe and Mn release as O₂ is depleted (Santschi et al. 1990); hence, extensive N₂ flux may be paired with J_{Fe} and J_{Mn}. Additional reduced species not considered here likely contribute significantly to sediment O₂ uptake and re-oxidation processes.

5.4.5 Biogeochemical cycling effects – Sediment-water metal flux results (Fig. 5.6) may appear to be in direct conflict with the overall goal of using HOx to reduce Fe and Mn levels in the water column. However, as shown by Mn data in Fig. 5.8, although J_{Mn} and Mn levels near the sediment (both at the SWI and 1 m above) typically increased in response to HOx operation, Mn levels in the bulk hypolimnion (4 m above the sediment) remained negligible excluding the period when the HOx was turned off. Similar results for J_{Mn} and J_{Fe} (Fe data not shown) were observed both near the HOx (CVCB; Fig. 5.8a) and mid-reservoir (C3; Fig. 5.8b). Hence, our results indicate that while HOx operations increase soluble metal fluxes out of the sediment, elevated levels of O₂ maintained by HOx operation oxidize the soluble metals as they diffuse from the sediment. Following oxidation, metal oxide particles settle back to the sediment, thereby sustaining an HOx-enhanced Fe and Mn redox cycle in the near-sediment water.

Simple mass balance calculations were performed to further evaluate the influence of near-sediment biogeochemical cycling on hypolimnion water quality. Maximum bulk hypolimnetic Fe and Mn concentrations were estimated based on CC 2006 Fe and Mn flux data shown in Fig. 5.6, total Fe and Mn sediment trap data for the lower hypolimnion over the HOx (P. Gantzer, unpubl.), hypolimnetic Fe and Mn levels at the beginning of the 2006 season, and average volumes of both the bottom meter and the full depth of the hypolimnion. Based on sediment trap data, Fe and Mn sedimentation rates of 3.9 and 2.6 mmol m⁻³ d⁻¹, respectively, were estimated for August through November 2006. It was assumed that no Fe or Mn was removed via oxidation/precipitation; thus, all metals diffusing out of the sediment and/or settling from the bulk water were retained in the volume assessed (benthic (1m) region or full hypolimnion). As shown in Fig. 5.9a, while actual Mn levels at 1 m above the sediment initially approached the maximum Mn levels at 1 m, the maximum Mn surpassed actual Mn levels considerably by mid-season. Average hypolimnetic Mn data (based on water samples obtained mid-hypolimnion at 7 m above the sediment) remained low and fell far below maximum Mn at 7 m, with the deviation indicating a net gain of Mn to the sediment. These rough calculations
characterizing the influence of biogeochemical cycling indicate that while moderate Mn suppression occurred in the near-sediment region, biogeochemical cycling and/or dilution prevented enhanced Mn levels released by \(J_{\text{Mn}} \) from reaching the bulk hypolimnion. Similar Fe results show that actual hypolimnetic Fe levels were insignificant compared to maximum estimates (Fig. 5.9b). Thus, while the previously discussed results show increased \(J_{\text{Mn}} \) and \(J_{\text{Fe}} \) from the sediment due to HOx operation (Fig. 5.6), overall suppression of metals from the bulk water is maintained via biogeochemical cycling and elevated \(O_2 \) in the benthic region.

5.4.6 Influence of HOx on bulk sediment

Bulk sediment data were used to assess how HOx-induced variation in \(J_{\text{Fe}} \) and \(J_{\text{Mn}} \) influenced Fe and Mn retention in the sediment. Bulk sediment total metal data and soluble metal and \(O_2 \) concentrations at the SWI from the 2008 field season are presented in Fig. 5.10. While bulk sediment levels of total Fe and Mn were comparable mid-reservoir (Fig. 5.10b) and in the back region (Fig. 5.10c), total metals, particularly Mn, were substantially higher near the HOx (Fig. 5.10a). The percentage of soluble Mn relative to total Mn is also relatively low at CVCB, indicating that more Mn was retained in the oxide form in this region. Although total Mn levels were much lower at C3 and \(O_2 \) levels at the SWI were comparable, the percentage of Mn in the soluble form was significantly greater mid-reservoir (Fig. 5.10a,b). Enhanced sediment Mn retention at CVCB may be a result of oxidation and adsorption processes due to increased levels of oxide particles in the region closest to the HOx and/or sediment focusing effects in the deeper CCR region (Fig. 5.1; Balzer 1982; Santschi et al. 1990). Sediment traps deployed throughout CCR in the lower hypolimnion showed elevated sedimentation rates in the near field region during summer oxygenation in 2007 (Gantzer et al. 2009b). Accelerated oxidation and precipitation of Fe and Mn and geochemical focusing in deeper regions as a result of oxygenation have also been observed by Schaller and Wehrli (1997) and Zaw and Chiswell (1999).

Despite the differing proportions of Mn at the various sample sites (Fig. 5.10a-c), a clear relationship between soluble and total Mn is typically observed. However, a similar correlation for Fe was not evident. While actual Fe and Mn kinetics are highly complex and affected by many variables (e.g., \(pH \), microbial processes), these results do indicate that Mn release may have been at least partially dependent on total Mn concentration while Fe kinetics was zero-order with respect to total Fe. Mn oxidation kinetics are frequently assumed to be a function of solid
Mn (MnO$_2$(s)) while Fe oxidation is typically defined solely as a function of the dissolved Fe$^{2+}$ form (Crittenden et al. 2005).

In addition to sedimentation effects, data from the back region (CR) suggest that horizontal migration of soluble metals may also influence metal distribution in CCR. CR went anoxic fairly early in summer 2008 (as indicated by sediment oxic zone depth, z_{max}; Fig. 5.10c) due largely to distance from the HOx. While soluble Mn levels remained relatively constant, soluble Fe increased significantly during this anoxic period. As discussed by Gantzer et al. (2009b), elevated Mn in the upper hypolimnion in the central CCR basin (at approximately the same elevation as CR) may be a result of horizontal migration of Mn released from anoxic sediment in the back region. This is supported by Belzile et al. (1996). It is likely that both soluble Fe and Mn were released from CR during the anoxic period and rapidly transported toward the central basin. However, average J_{Fe} was significantly higher than J_{Mn} (0.7 and 0.3 mmol m$^{-2}$ d$^{-1}$, respectively) at CR. Fe would thus have been more rapidly resupplied in response to losses from horizontal transport which could explain the deviation in soluble Fe and Mn late season (Fig. 5.10c). Horizontal transport from the back region may also have been a factor in enhanced levels of soluble Mn (as compared to Fe) mid-reservoir (Fig. 5.10b). Due to slow Mn oxidation kinetics, influent soluble Mn would have remained prevalent in the oxic C3 region while soluble Fe would have rapidly oxidized. A correlation between Mn levels in the lower hypolimnion at CR and C3 was observed (data not shown). Interestingly, it has been shown that the lithospheric average ratio of Fe:Mn in sedimentary rocks is approximately equivalent to the kinetic oxidation rates of these two metals (Davison 1982).

Historical bulk sediment data characterizing the near field region from before the HOx was turned on in 2005 through summer 2008 are shown in Fig. 5.11. These data support HOx-induced increases in oxidation and precipitation near the HOx shown in Fig. 5.10a. Following the start of HOx operations in July 2005, total Fe, Mn, and TOC levels increased substantially in the sediment near the HOx. However, after the first year of HOx operation, bulk sediment measurements have remained relatively constant. Similar results, though with a less significant initial increase in total Fe, Mn, and TOC, were observed at other locations as well (C3 and CR; data not shown). The observed peak in TOC in 2006 may likely be a result of seasonal organic matter deposition (Berg et al. 2007).
CCR is largely isolated from allochthonous input and variation in annual nutrient loading is likely minimal. Hence, results in Fig. 5.11 indicate that after background levels of soluble Fe and Mn were oxidized in the first year of HOx operation, new steady-state conditions based on HOx operation were established. From a mass-balance perspective, incorporating increased levels of Fe and Mn into the sediment over time should decrease soluble metal concentrations and subsequent O₂ demand in the hypolimnion. Our sediment-side results support previous work based on water-column data showing reduced hypolimnetic O₂ demand as a result of long-term oxygenation (Moore et al. 1996; Matthews and Effler 2006). TOC data indicate that HOx operation initially resulted in increased deposition of organic matter in the hypolimnion to the sediment, possibly due to enhanced precipitation of metal oxides. However, a significant decrease in hypolimnetic TOC was not observed (data not shown). Because sediment TOC levels have stayed fairly constant since 2006, a balance between increased TOC loading via increased precipitation of oxide particles and enhanced burial efficiency due to increased O₂ exposure time may have been established (Sobek et al. 2009).

Based on 2005-2008 peeper data, seasonal Fe and Mn porewater concentrations and average JFe and JMn have remained relatively constant throughout HOx operations (Fig. 5.2, 5.6; full peeper-profile data set not shown). Paired with bulk sediment data in Fig. 5.11, these results indicate that while hypolimnetic metal concentrations were decreased by suppressing soluble metal fluxes to the benthic region, the potential sediment O₂ demand (Bryant et al. 2010; Ch. 2) has not been significantly decreased by oxygenation due to the accumulation of precipitated and subsequently reduced metals in the sediment (Yagi 1996). However, while a substantial source of reduced metals may remain in the sediment during oxygenation (A. Matzinger, unpubl.), maintaining elevated near-sediment O₂ levels and an established sediment oxic zone (Fig. 5.3-5.5, 5.10) should prevent the release of these soluble species into the overlying water, as shown by Jørgensen and Boudreau (2001) and Liboriussen et al. (2009).

5.4.7 Effect of JFe and JMn on water column

Our results have established that continuous oxygenation enhanced JFe and JMn out of the sediment (Fig. 5.6, 5.8) by increasing the ∂C/∂z driving force via both reduced metal concentrations in the near-sediment water (Fig. 5.2-5.5) and elevated metal concentrations in the sediment porewater (Fig. 5.2, 5.3). However, as indicated by mid-hypolimnion water sample data (Fig. 5.8, 5.9) and simple flux calculations (Fig. 5.9),
near-sediment biogeochemical cycling maintained by HOx-increased O₂ levels prevented Fe and Mn released from the sediment from reaching the bulk hypolimnion. These results are further supported by water sample data characterizing the water column on a reservoir-wide scale. As shown in Fig. 5.9, average soluble Mn and Fe levels in the hypolimnion remained at ~10 and <1 μmol L⁻¹, respectively, during 2006 oxygenation. Similar results were obtained during 2008, with a notable exception when the HOx was turned off in late August (Fig. 5.5). During this period, while soluble Fe increased immediately above the sediment (Fig. 5.5b), little change was observed in hypolimnetic Fe (data not shown). Conversely, soluble Mn concentrations in the lower hypolimnion increased significantly to ~50 μmol L⁻¹ (Mn₁m in Fig. 5.8), though higher elevations were largely unaffected due to the relatively brief period that the HOx was turned off (Mn₄m in Fig. 5.8). These results support the findings of Gantzer et al. (2009b) which show that hypolimnetic Mn levels are strongly influenced by HOx-induced variation in hypolimnetic O₂. The overall effect of oxygenation on source water quality is revealed by CCR historical data showing that annual hypolimnetic Fe and Mn levels have decreased significantly since the start of HOx operations in 2005 (Gantzer et al. 2009b).

It should be acknowledged that while the use of HOx to improve water quality has been established (McGinnis et al. 2002; Beutel 2003; Singleton et al. 2006), the effect of HOx may be relatively modest in comparison to ‘natural oxygenation’ caused by fall turnover (Steichen et al. 1979). Our results show that Fe and Mn were sufficiently suppressed and elevated hypolimnetic O₂ was maintained throughout summer stratification in 2008 (Fig. 5.12). However, Fe and particularly Mn increased as hypolimnetic O₂ decreased approaching fall turnover. Following turnover in mid-November 2008, hypolimnetic O₂ increased significantly while Fe and Mn dropped to minimum concentrations due to dilution via mixing of hypolimnion water (relatively low in O₂ and high in soluble species) and epilimnion water (relatively high in O₂ and low in soluble species); hence, the natural oxygenation effect of turnover is demonstrated. However, hypolimnetic concentrations of soluble species would have been substantially increased without summer oxygenation. Overall results from this study clearly show the beneficial effect that HOx can have on Fe and Mn during summer stratification when water quality typically decreases significantly as a result of seasonal anoxia and the subsequent release of reduced species from the sediment (Davison et al. 1982).
5.5 Conclusions

This study shows that HOx can be used to improve drinking water quality by decreasing source water Fe and Mn levels. Soluble Fe was controlled relatively easily as long as minimal levels of O\textsubscript{2} remained near the sediment; however, soluble Mn levels in the lower hypolimnion increased significantly when the HOx was not in operation and the sediment became anoxic. Although J\textsubscript{Fe} and J\textsubscript{Mn} were enhanced by HOx operation, results indicate biogeochemical cycling supported by elevated O\textsubscript{2} in the benthic region and in the sediment prevented released metals from reaching the bulk water. Oxygenation techniques using artificial destratification to increase hypolimnetic O\textsubscript{2} may not maintain an oxic zone that facilitates biogeochemical cycling as close to the sediment as HOx due to sediment resuspension effects (Gafsi et al. 2009). Increased amounts of Fe and Mn in the bulk sediment resulting from enhanced sedimentation were found to be retained in the sediment via HOx operation. Furthermore, J\textsubscript{Fe} and J\textsubscript{Mn} were estimated to constitute up to 15\% of J\textsubscript{O2} during summer stratification. While only Fe and Mn were evaluated in this study, additional species (e.g., nitrite, methane) may also contribute to sediment O\textsubscript{2} uptake (Maerki et al. 2009). Our results emphasize that O\textsubscript{2} allocated for the oxidation of enhanced fluxes of reduced species and subsequent incorporation of these species into the sediment must be taken into account for successful HOx operation.

Ultimately, source water levels of Fe and Mn were shown to be substantially reduced by HOx operation (Fig. 5.3-5.5, 5.8, 5.9), thus decreasing treatment required at the plant. This work (Ch. 5) and the studies on J\textsubscript{O2} (Ch. 4) and the CCR sediment microbial community (Ch. 6) were intended as scientific and conceptual evaluations of the effect of HOx on sediment-water fluxes and water quality. The companion works by Gantzer et al. (2009a,b) were intended to serve as a more applied guide to HOx operation. Our combined works, which comprehensively assess oxygenation from both a sediment and source-water perspective, will be used to optimize CCR HOx operations and source-water quality and should also be of benefit to managers of similar lake and reservoir systems.
5.6 Acknowledgements

The authors thank Elizabeth Rumsey, Kevin Elam, and the staff at Western Virginia Water Authority who offered invaluable support in the field and with laboratory samples. We also thank Robert Rebodos for assistance with ferrozine analyses and to Peter Berg for valuable discussion. We acknowledge financial support from the National Science Foundation (NSF IGERT Program) and the Western Virginia Water Authority. The research described in this paper was partially funded by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA.

5.7 References

Table 5.1. Estimation of proportion of measured sediment O₂ uptake rate (J_{O2}; based on microprofile data) utilized for oxidation of iron (Fe) and manganese (Mn) fluxes (J_{Fe} and J_{Mn}; based on peeper data). J_{Fe} and J_{Mn} were converted to theoretical J_{O2} (J_{O2-Fe} and J_{O2-Mn}) using stoichiometry defined by Eq. 5.2 and 5.3. The sum of J_{O2-Mn} and J_{O2-Fe} yields the total theoretical J_{O2} (J_{O2-T}) allocated to oxidation of reduced Mn and Fe released from the sediment.

<table>
<thead>
<tr>
<th>Date</th>
<th>Season</th>
<th>Measured J_{Mn}</th>
<th>Theoretical J_{O2-Mn}</th>
<th>Measured J_{Fe}</th>
<th>Theoretical J_{O2-Fe}</th>
<th>Total theoretical J_{O2-T}</th>
<th>Measured J_{O2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/22/05</td>
<td>fall</td>
<td>0.04</td>
<td>0.02</td>
<td>0.28</td>
<td>0.07</td>
<td>0.09</td>
<td>1.8</td>
</tr>
<tr>
<td>10/13/05</td>
<td>fall</td>
<td>0.30</td>
<td>0.15</td>
<td>0.42</td>
<td>0.10</td>
<td>0.25</td>
<td>10.4</td>
</tr>
<tr>
<td>11/3/05</td>
<td>fall</td>
<td>0.25</td>
<td>0.13</td>
<td>0.36</td>
<td>0.09</td>
<td>0.22</td>
<td>10.0</td>
</tr>
<tr>
<td>1/13/06</td>
<td>winter</td>
<td>0.34</td>
<td>0.17</td>
<td>1.51</td>
<td>0.38</td>
<td>0.55</td>
<td>8.2</td>
</tr>
<tr>
<td>2/14/06</td>
<td>winter</td>
<td>0.28</td>
<td>0.14</td>
<td>1.62</td>
<td>0.41</td>
<td>0.55</td>
<td>10.1</td>
</tr>
<tr>
<td>3/23/06</td>
<td>spring</td>
<td>0.32</td>
<td>0.16</td>
<td>1.32</td>
<td>0.33</td>
<td>0.49</td>
<td>11.3</td>
</tr>
<tr>
<td>4/19/06</td>
<td>spring</td>
<td>0.23</td>
<td>0.11</td>
<td>0.53</td>
<td>0.13</td>
<td>0.25</td>
<td>10.8</td>
</tr>
<tr>
<td>5/31/06</td>
<td>spring</td>
<td>0.31</td>
<td>0.16</td>
<td>0.63</td>
<td>0.16</td>
<td>0.31</td>
<td>7.9</td>
</tr>
<tr>
<td>7/5/06</td>
<td>summer</td>
<td>0.22</td>
<td>0.11</td>
<td>0.47</td>
<td>0.12</td>
<td>0.23</td>
<td>0.0</td>
</tr>
<tr>
<td>8/9/06</td>
<td>summer</td>
<td>0.18</td>
<td>0.09</td>
<td>0.40</td>
<td>0.10</td>
<td>0.19</td>
<td>3.9</td>
</tr>
<tr>
<td>8/28/06</td>
<td>summer</td>
<td>0.37</td>
<td>0.19</td>
<td>0.61</td>
<td>0.15</td>
<td>0.34</td>
<td>3.7</td>
</tr>
<tr>
<td>10/18/06</td>
<td>fall</td>
<td>0.48</td>
<td>0.24</td>
<td>0.65</td>
<td>0.16</td>
<td>0.40</td>
<td>3.7</td>
</tr>
<tr>
<td>12/5/06</td>
<td>winter</td>
<td>0.29</td>
<td>0.15</td>
<td>0.44</td>
<td>0.11</td>
<td>0.26</td>
<td>21.6</td>
</tr>
<tr>
<td>4/19/07</td>
<td>spring</td>
<td>0.20</td>
<td>0.10</td>
<td>0.15</td>
<td>0.04</td>
<td>0.14</td>
<td>3.0</td>
</tr>
<tr>
<td>5/2/07</td>
<td>spring</td>
<td>0.02</td>
<td>0.01</td>
<td>0.11</td>
<td>0.03</td>
<td>0.04</td>
<td>3.4</td>
</tr>
<tr>
<td>5/14/07</td>
<td>spring</td>
<td>0.12</td>
<td>0.06</td>
<td>0.59</td>
<td>0.15</td>
<td>0.21</td>
<td>3.2</td>
</tr>
<tr>
<td>6/11/07</td>
<td>summer</td>
<td>0.16</td>
<td>0.08</td>
<td>0.49</td>
<td>0.12</td>
<td>0.20</td>
<td>6.8</td>
</tr>
<tr>
<td>6/26/07</td>
<td>summer</td>
<td>0.29</td>
<td>0.15</td>
<td>0.84</td>
<td>0.21</td>
<td>0.36</td>
<td>3.9</td>
</tr>
<tr>
<td>7/9/07</td>
<td>summer</td>
<td>0.24</td>
<td>0.12</td>
<td>0.70</td>
<td>0.17</td>
<td>0.29</td>
<td>8.2</td>
</tr>
<tr>
<td>8/7/07</td>
<td>summer</td>
<td>0.17</td>
<td>0.09</td>
<td>0.51</td>
<td>0.13</td>
<td>0.21</td>
<td>4.9</td>
</tr>
<tr>
<td>6/15/08</td>
<td>summer</td>
<td>0.30</td>
<td>0.15</td>
<td>0.61</td>
<td>0.15</td>
<td>0.30</td>
<td>19.4</td>
</tr>
<tr>
<td>7/15/08</td>
<td>summer</td>
<td>0.61</td>
<td>0.31</td>
<td>0.82</td>
<td>0.21</td>
<td>0.52</td>
<td>15.5</td>
</tr>
<tr>
<td>8/12/08</td>
<td>summer</td>
<td>0.67</td>
<td>0.33</td>
<td>0.64</td>
<td>0.16</td>
<td>0.49</td>
<td>12.0</td>
</tr>
<tr>
<td>9/14/08</td>
<td>fall</td>
<td>0.42</td>
<td>0.21</td>
<td>0.46</td>
<td>0.11</td>
<td>0.32</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Figure 5.1. Map of Carvin’s Cove Reservoir (CCR) showing locations of the seven sampling sites (CC, CVCB, CE, C1, C2, C3, and CR) and the hypolimnetic oxygenation system (HOx).
Figure 5.2. Profiles of soluble iron (Fe) and manganese (Mn) at the sediment-water interface (SWI) were obtained using in situ porewater analyzers (peepers). Data shown are from site CC during 2007 campaign.
Figure 5.3. Contour plots based on peeper data obtained near the HOx at site CC in 2006 (a and d) and at site CVCB in 2007 (b and e) and 2008 (c and f). Corresponding variations in HOx flow are also shown. Analogous contour plots for site C3 (mid-reservoir) for the 2007 and 2008 campaigns are provided in Appendix B.2. Dashed line indicates SWI.
Figure 5.4. Total and soluble Fe and Mn data obtained from near-sediment core water samples collected throughout 2006 H Ox operations. Samples were collected near the H Ox (a; site CVCB) and mid-reservoir at sites C3 (b) and C2 (c). Analogous data for 2008 H Ox operations are provided in Appendix B.3.
Figure 5.5. Correlation between near-sediment Fe and Mn levels (as characterized by sediment core water sample data), HOx flow, and dissolved oxygen (O₂) levels at the SWI (as characterized by MP4 microprofile data) during the August 2008 campaign at C3. The proportion of total Mn in the soluble form is shown in (a) and corresponding Fe data are shown in (b).
Figure 5.6. Time series of sediment O$_2$ uptake rate (J_{O2}), diffusive fluxes of soluble Fe and Mn (J_{Fe} and J_{Mn}, respectively) at the SWI, and HOx flow rate both near the HOx (a; site CVCB) and mid-reservoir (b; site C3). Dashed lines indicate periods between seasons of focused field sampling.
Figure 5.7. Evaluation of the proportion of measured J_{O2} utilized for oxidation of reduced Fe and Mn (based solely on diffusive fluxes J_{Fe} and J_{Mn}; the additional influence of microbial and surface-mediated processes were not taken into account). Results shown are presented as percentages of theoretical J_{O2} (based on stoichiometric conversion of J_{Fe} and J_{Mn}) relative to measured J_{O2}. The winter period (November thru March) is designated by blue shaded regions.
Figure 5.8. Correlation between J_{Mn}, HOx flow, and Mn concentrations directly at the SWI, 1 m above the sediment (benthic region), and 4 m above the sediment (mid-hypolimnion). Data obtained near the HOx are presented in (a) and mid-reservoir in (b). Dashed lines indicate periods between seasons of focused field sampling.
Figure 5.9. The effect of near-sediment biogeochemical cycling was evaluated using a mass balance based on J_{Mn} (a), J_{Fe} (b), and average volume of the benthic region (1m depth) and the average hypolimnion (7m depth).
Figure 5.10. Bulk sediment total Fe and Mn data, soluble Fe and Mn concentrations at the SWI (peeper data), and corresponding sediment O$_2$ conditions as characterized by depth of the sediment oxic zone (z_{max}) and O$_2$ concentration 5 cm above and directly at the SWI (microprofile data). Data obtained near the HOX (a; CVCB), mid-reservoir (b; C3), and from the back region (c; CR) during 2008 are compared.
Figure 5.11. Time series of total organic carbon (TOC), total Fe, and total Mn in bulk sediment characterizing the near field region from before CCR HOx operations began in 2005 through 2008 (no data collected in 2007).
Figure 5.12. The influence of fall turnover as compared to HOx on total and soluble Fe and Mn concentrations in the lower hypolimnion and average hypolimnetic O₂. Metals data are from hypolimnion water samples and O₂ data are from CTD (conductivity-temperature-O₂ as a function of depth) profiles obtained at site CC in 2008.
Chapter 6 – Variations in sediment microbial community structure in response to hypolimnetic oxygenation

Bryant, Lee D., Helmut Bürgmann, John C. Little

1) Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America (USA) 24060.

2) Eawag, Surface Waters - Research and Management, Kastanienbaum, Switzerland CH-6047.

6.1 Abstract

It has been shown that microbially-mediated sediment-water metal fluxes often have a greater influence on water quality than allochthonous sources. As alternative approaches for improving water quality are being explored to address the emerging global water crisis, hypolimnetic oxygenation systems (HOx) are being increasingly used to elevate dissolved oxygen levels in the hypolimnion and suppress sediment-water fluxes of soluble metals (e.g., iron (Fe) and manganese (Mn)). However, while HOx-induced changes in sediment oxygen uptake and soluble metal fluxes have been evaluated in terms of chemical and physical processes in previous work, the influence of sediment microbial processes has not been assessed. Therefore, we performed a study focused on using microbial techniques to quantify changes in microbial community structure and corresponding biogeochemical cycling on a reservoir-wide scale as a function of HOx operations.

Results show a moderate phylogenetic trend in samples obtained near the HOx at the end of the 2006 oxygenation period. Increased nucleic acid concentration was also observed at this location throughout the 4-month campaign. A distinct trend in sediment microbial community structure in response to HOx operation was not found, however. This may be attributed to abiologic controls on Fe and Mn cycling, the adaptability of many bacteria to variations in prevalent electron acceptors, and/or background HOx effects. Nevertheless, insight was obtained on the relative significance of different environmental and geochemical variables on community composition. Our results suggest that while the sediment microbial community may not be drastically affected by HOx, some HOx-induced variation may occur (particularly in the near field following continuous oxygenation) that merits further investigation.
6.2 Introduction

In current microbial studies, environmental influences are often used as a factor for shaping microbial community structure and biogeochemical fluxes (Snoeyenbos-West et al. 2000; Stein et al. 2002; Yannarell and Triplett 2005). Significant environmental variability may be observed at the sediment-water interface (SWI) in aquatic systems due to the extremely steep gradients of chemical, physical, and microbial properties and subsequent biogeochemical transformation processes that occur in this region (Santschi 1990). Fluxes of reduced chemical species from the sediment can significantly reduce the quality of the overlying water and are one of the primary sources of reduced metals in the hypolimnion of stratified lakes and reservoirs (Zaw and Chiswell 1999; Zhang et al. 1999; Beutel 2003). It has been shown that microbially mediated sediment-water metal fluxes often have a greater influence on water quality than allochthonous sources (Christian and Lind 2007).

In light of the imminent water crisis and the acknowledged need for alternative approaches for improving water quality (NRC 2004), hypolimnetic oxygenation systems (HOx) are being more frequently used to improve water quality by increasing O₂ levels in the hypolimnion of stratified lakes and reservoirs. HOx systems have been shown to not only increase O₂ levels in the water column and at the SWI (Gantzer et al. 2009a; Ch. 4) but to also have significant influence on suppression of iron (Fe) and manganese (Mn) fluxes out of the sediment (Gantzer et al. 2009b; Ch. 5). However, while HOx-induced changes in sediment O₂ uptake and soluble metal fluxes have been evaluated in terms of chemical and physical processes by these studies and previous work (Beutel 2003), the influence of sediment microbial processes has not been assessed. It is established that sediment microbial communities can change in terms of both population size and structure as a function of sediment O₂ availability (House 2003). Thus, the effect of HOx-induced variation in sediment microbial community structure and corresponding biologically controlled redox processes may be significant. Furthermore, while metal cycling (particularly Mn) is frequently controlled by sediment microbial processes, very little is known about the actual physiology and metabolic diversity in sediment microbial communities (DiChristina and Delong 1993; Stein et al. 2001; Stein et al. 2002). We therefore
conducted a study using microbial techniques to relate changes in microbial community structure on a reservoir-wide scale to HOx operations.

6.3 Materials and procedures

6.3.1 Study site and instrumentation – An HOx was installed in Carvin’s Cove Reservoir (CCR), one of the primary drinking-water-supply reservoirs for Roanoke, Virginia, in 2005 by the Western Virginia Water Authority. Throughout 2006 CCR HOx operations, sediment cores were obtained at sites CC, CVCB, CE, and C3 ranging from directly alongside the HOx to ~2,000 m upstream from the HOx (Fig. 6.1). Samples were obtained at all four sample sites on four dates covering a range of HOx flow rates to establish a network of samples characterizing the influence of the HOx on a reservoir-wide basis (Fig. 6.1, 6.2). As shown by HOx flow rates and microbial sampling dates for 2006 in Fig. 6.2, sediment samples were obtained during both anoxic periods after the HOx had been turned off and also oxic periods after continuous oxygenation. Following the sampling method detailed in Ch 5, sediment cores were obtained using a Uwitec corer. Core sub-samples (~12 mL) were collected via sampling with a Uwitec core-cutter as follows: 0-2 mm, 2-4 mm, 4-6 mm, and 1-1.2 cm relative to the sediment surface (SWI = 0 mm; Table 6.1). Each sub-sample was subsequently divided into three ~4 mL subsamples. Sub-samples were immediately placed in sterile glass bottles, sealed, and frozen at -80°C until analysis (excluding shipment (on ice) to Eawag, the institute where microbial work was performed).

6.3.2 Analytical methods – Nucleic acids were extracted from CCR sediment samples and then evaluated using a PicoGreen (Invitrogen Quant-iT) quantification to assess DNA concentration. Polymerase chain reaction (PCR) amplification was performed on extracted nucleic acid samples to obtain a high number of copies of a defined piece of ribosomal RNA (rRNA) gene which is an established phylogenetic marker (Fisher and Triplett 1999). PCR products were then assessed using ribosomal intergenic spacer analysis (RISA) to obtain a fingerprint of the sediment microbial community structure. The presence of Mn-oxidizing bacteria in CCR sediment was evaluated using the Leukoberbelin Blue (LBB) method (Tebo et
al. 2007). Detailed procedures for the microbial techniques used are provided below and in Appendix C.

6.3.2.1 Nucleic acid extraction from CCR sediment – Nucleic acids were extracted from sediment samples following the method of Bürgmann et al. (2001) and the protocol included in Appendix C.1. Approximately 0.5 g of each sediment sample (Table 6.1) was used for extraction. Nucleic acid extracts were stored at -20°C prior to subsequent PicoGreen quantification and PCR and RISA analyses.

6.3.2.2 DNA quantification with PicoGreen – Extracted nucleic acid concentrations were quantified using a PicoGreen quantification (Appendix C.2) based on the Quant-it dsDNA quantitation kit (Invitrogen P7589). The purity of the extracted DNA was assessed spectrophotometrically from the absorbance ratio at 260 and 280 nm (Sigler et al. 2002). Nucleic acid samples were diluted to concentrations of 5, 10, and 20 ng μL^{-1} for PCA and RISA analyses.

6.3.2.3 Nucleic acid amplification via PCR – Amplification of 16S ribosomal RNA gene fragments was performed using Touchdown PCR (Appendix C.3; Stein et al. 2001; Sigler et al. 2002) with universal bacterial-specific primers (forward primer 27f and reverse primer 1492r; Stein et al. 2001). As defined in Appendix C.3, the PCR reaction mix consisted of 418 μL H₂O, 65 μL PCR buffer, 78 μL MgCl₂, 1.3 μL forward primer, 1.3 μL reverse primer, 5.2 μL dNTP, 65 μL BSA, and 3.3 μL Taq. Each sample for PCR amplification consisted of 1 μL sample of diluted nucleic acids and 49 μL PCR reaction mix. Following initial denaturing at 94 °C for 5 min, thirty-five PCR cycles were performed under the following conditions: denaturing at 94 °C for 30 sec, annealing at 55 °C for 1 min, extraction at 72 °C for 1.5 min, with a 5-min completion period at 72 °C at the end of the cycles.

Amplified rRNA products were then screened on agarose gel for densitometric screening. Primers ARISA-16S-1406f / ARISA-23r (Yannarell et al. 2003; Yannarell and Triplett 2005) were used for PCR-amplification of the ribosomal intergenic spacer region for RISA. Additional PCR products were obtained using primers specific to the 16S rRNA genes of *Geobacter metallireducans* (49f / 825r; Andersen et al. 2003) and *Shewanella putrefaciens* (SW.783f /
The abundance of these targets was assessed via quantitative real-time PCR (q-PCR) for future work focused specifically on the response of Fe- and Mn-reducing bacteria to HOx.

6.3.2.4 *Community composition via RISA* – Banding patterns obtained via RISA were used to characterize microbial community structure (Fisher and Triplett 1999; Sigler et al. 2002). The 16S-23S intergenic region shows significant variation in terms of length and nucleotide sequence that can be used to distinguish between different bacterial phylotypes (Fig. 6.3) although the specific species is not defined. Each band’s relative intensity was used to determine relative abundance of each observed phylotype.

For RISA, the rRNA spacer region was amplified as described above and 5 μL of sample (mixed with 3 μL bromphenol blue/sucrose loading dye) was loaded onto 5% bis-acrylamide gels. Gel electrophoresis was then performed in a 1 × TAE buffer at 35°C for 15 min at 30V and then 4 h at 200V. Following electrophoresis, staining was performed by gently agitating the gel in 50 mL of 1 × TAE with a dilution of 1:5,000 SYBR Green dye (Molecular Probes Inc.) for 30 min. RISA band patterns (Fig. 6.3) were then analyzed using the Gel Doc high-resolution gel documentation system and Quantity One software (Bio Rad Laboratories). Densitometric data for each gel was exported to Microsoft Excel and manually assembled into a single dataset. All community analyses reported here are based on presence-absence data.

6.3.2.5 *Correlation to CCR geochemical data* – Results from microbial analyses were correlated to several other data sets from our 2006 CCR experimental campaign to explain observed variance in phylogenic data. Sediment-water O2 profile data obtained via an in situ microprofiler (MP4; Unisense A/S; Ch. 2-5), sediment-water Fe and Mn (soluble) profile data obtained via in situ porewater analyzers (“peepers”; Hesslein 1976; Ch. 5), and total organic carbon (TOC), phosphorus (P_tot), Fe (Fe_tot), and Mn (Mn_tot) data obtained from bulk sediment samples (Ch. 5) were all used to evaluate microbial results. Details on sampling and analytical procedures for geochemical data are included in Ch. 5. Ordination analysis was performed using the statistical software R (R Development Core Team 2009) with packages vegan (Oksanen et al. 2009) and Biodiversity R (Kindt and Coe 2005).
6.3.2.6 Identification of Mn-oxidizers via LBB – Although RISA yields quantitative data on the different phylogenies represented in a given community, qualitative data identifying the bacteria species is not obtained. Because we were specifically interested in Fe and Mn biogeochemical cycling in CCR, the presence of Mn oxidizers in CCR was assessed based on the LBB method following the Manual of Environmental Microbiology (Tebo et al. 2007). Sediment samples taken from the upper 2 cm of cores from CC, CVCB, CE, and C3 were plated on agar plates of Mn-containing media described by Stein et al. (2001). Probable Mn-oxidizing colonies, visually identified as a dark brown or orange irregularly-shaped mass, were selected and streaked to obtain isolates. Fourteen isolated colonies were then inoculated in Mn broth (Stein et al. 2001). Isolate samples were analyzed using a 1:5 ratio with LBB, a color indicator that chemically reacts with oxidized Mn. Controls of LBB solution were maintained to ensure that the oxidation observed was biological rather than chemical. Absorption measurements of isolate samples and controls were taken using a Hitachi Digital Spectrophotometer at 620 nm. A potassium permanganate calibration curve was employed to relate oxidized Mn to absorption.

6.4 Results and discussion

6.4.1 Relative concentrations of DNA – As shown in Fig. 6.4, several trends in nucleic acid concentration may be discerned from PicoGreen data although a defined temporal or spatial relationship is not evident. Nucleic acid concentrations can be used as an indicator for microbial biomass as shown by Pesaro et al. (2002). Nucleic acid concentration was typically highest at CVCB, the site located immediately alongside the HOx in the deepest CCR region (site CC is located slightly downstream from the HOx; Fig. 6.1). Thus, increased O2 levels due to HOx proximity and accumulated organic matter due to sediment focusing may have supported a denser sediment microbial community. Increased nucleic acid concentrations were frequently observed at the deepest sample depth (1-1.2 cm), particularly at site CE, which may possibly be due to accumulation of recently deposited material with relatively low biomass at the sediment surface during certain periods of the campaign. Additionally, nucleic acid concentration is shown to increase at all locations by the end of the campaign, with the exception of site CVCB which remained relatively constant. This may be attributed to either HOx-induced increases in
sediment O$_2$ and/or elevated levels of organic matter following late-summer algal matter deposition.

6.4.2 Phylogenic hierarchy – Hierarchial clustering of the RISA community fingerprints showed that the CCR sediment samples were fairly similar in terms of bacterial community structure as indicated by the large grouping of samples in green in Fig. 6.5. However, samples obtained close to the HOx (sites CC and CVCB) at the end of the experimental campaign formed a separate cluster (C4 and B4 grouping in orange in Fig. 6.5). The sediment in this region is influenced by the HOx more directly, which may have contributed to the observed similarity. Hypolimnetic O$_2$ levels remained extremely high throughout the summer and early fall prior to turnover, which occurred in mid-November 2006. This facilitated elevated O$_2$ in the upper sediment layers and also precipitation of Fe- and Mn-oxide particles as reduced Fe and Mn oxidized in the water column (Gantzer et al. 2009a,b; Ch. 5).

In addition to HOx effects on sediment composition, natural sediment focusing may have also been a factor in the observed phylogenetic similarity. These CC and CVCB samples were obtained from the deepest part of CCR in mid-October; thus, this region likely had much higher levels of freshly-accumulated organic matter as a result of settled spring and summer algal matter and terrestrial sediment focusing. Bulk sediment data (Ch. 5) showed that total organic carbon, Fe, and Mn levels were greater at CVCB than in shallower regions (e.g., C3) farther from the HOx. The influence of near-field sediment composition is further supported by the fact that within the October CC-CVCB sample group, even greater similarity is observed in the samples obtained from the sediment surface (B41 and C41; designated in red in Fig. 6.5). The sediment microbe community in the upper sediment would obviously be most directly affected by both the accumulation of newly deposited material (resulting from HOx operations, algal settling, and/or sediment focusing) and also increased hypolimnetic O$_2$ levels. These results are supported by PicoGreen data showing enhanced nucleic acid concentration at CVCB (Fig. 6.4).

6.4.3 Correlation between microbial community structure, geochemical cycling, and HOx operation – Canonical correspondence analyses (CCA; Ter Braak 1986) were performed to relate sediment microbial composition to environmental (geochemical) variables. Axes for each variable were plotted via CCA to explain variance in the dataset. Proximity of a sample or
phytotype to a specific axis indicates correlation. Initially, a constrained CCA based on the full set of CCR samples was performed using an environmental dataset based on global experimental and system characteristics (Fig. 6.6a). In this analysis, 17% of the variance in microbial community structure identified by RISA can be explained. As also indicated by the phylogenetic hierarchy in Fig. 6.5, CCA results in Fig. 6.6 show increased correlation between the upper-sediment samples obtained near the HOx in mid-October (B4 and C4 samples) and the variables time and flow (which are directly related as flow was changed over the duration of the experiment; Fig. 6.2). Moderate correlation between sites closer to the HOx and O₂ levels at the SWI (O₂_d) is also observed. Conversely, samples from the site farthest from the HOx (C3 or D sample set; Table 6.1) were logically most strongly related to distance but far less correlated to HOx flow and SWI O₂ levels. However, bacterial phylotypes were ultimately not found to be strongly associated with any of the environmental variables assessed in the initial CCA model.

Because the variance explained by the constrained CCA model was low, an unconstrained analysis with detrended correspondence analysis (DCA) was also performed (Fig. 6.6b). The DCA indicated that ~35% of the variance is explained by the first two axes of the ordination. This relatively low value of explained variance indicates that more than just one or two common trends in species distribution contributed to the observed variance. Passively fitting environmental variables indicated that flow, time, and O₂ at the SWI were closely correlated in their effect on community composition, while distance and depth were found to be independent (Fig. 6.6). Slightly increased correlation between bacterial phylogenies and the variables SWI O₂ and time/flow was also observed.

To evaluate the relationship between community composition and corresponding CCR sediment geochemical data, a constrained CCA was performed on a reduced dataset that excluded samples for which geochemical data was unavailable. In addition to the environmental variables shown in Fig. 6.6 (though time was omitted due to the correlation with flow), TOC, P_tot, Fe_tot, and Mn_tot data were assessed as additional constraining variables (Fig. 6.7). CCA based on the reduced dataset and supporting geochemical data explained an additional ~19% of the variance, with distance, flow, and Mn_tot found to be the most significant variables. The considerable increase in the explained variance indicates the importance of local sediment conditions relative to the global system properties. The increased influence of Mn_tot as compared to Fe_tot may be attributed to the fact that Mn redox kinetics is largely dominated by
microbial processes while Fe kinetics are typically chemically controlled. TOC was the most insignificant variable, which does not support the theoretical influence of organic matter deposition and sediment focusing in the deeper CCR region (previously discussed).

An additional CCA ordination was performed based only on site CC sample data and corresponding soluble Fe and Mn porewater data (CC was the sole site at which in situ peepers were deployed in 2006 due to equipment limitations). O₂, Fe, and Mn levels at the SWI and HOx flow were found to be the most significant variables (Fig. 6.8). However, the degree of variance explained by these environmental variables was not significant, which is most likely due to the small sample size and small environmental gradient sampled.

In summary, the multiple CCA ordinations explained low proportions of the overall variance in our sample set as a function of the environmental and geochemical variables evaluated. The unconstrained ordination also indicated, however, that the community structure is not influenced by an easily discernable trend but rather by independent changes of many phylotypes (Fig. 6.6-6.8). Regardless, in comparison to results from other CCA studies (Yannarell and Triplett 2005; Bürgmann, pers. comm.), a relatively small part of the variance in the community dataset was explained by our overall CCA ordinations in general and by our environmental variables specifically. This indicates that either there are important drivers not considered here (e.g., pH, temperature, sediment total:soluble metal ratios), sediment geochemical data did not sufficiently represent microbial sediment samples due to localized sediment heterogeneity, operational errors during laboratory analyses occurred, and/or that a large part of the observed variance is simply random or related to methodological noise. We opted to analyze presence-absence data only in our analysis since this approach is considered more robust against PCR and other biases inherent to microbial fingerprinting methods. However, this analysis also masks more gradual environmental influences on the relative abundances of prevalent microbial taxa. Considering the high overall uniformity of the sediment microbial community structure that was observed, incorporating the information on relative band intensities as a proxy for relative abundance of microbial species might have allowed for a better correlation of environmental and community datasets.

6.4.4 Presence of metal-oxidizers and reducers – Fe- and Mn-reducers and also Mn-oxidizers were confirmed to be members of the CCR sediment microbial community. Fe- and
Mn-reducers *G. metallireducans* and *S. putrefaciens* were successfully detected via q-PCR. While the Mn-oxidizers were not qualitatively identified, their presence was confirmed via LBB analyses. Three of the fourteen selected colonies were identified as Mn-oxidizers by the LBB method. These samples exhibited Mn-oxidation rates of approximately three times the background levels. The presence of these bacterial colonies confirms that Fe and Mn redox processes in CCR are at least partially influenced by Fe- and Mn-specific bacteria. Additionally, these results indicate that Fe- and Mn-specific bacteria are phylogenic members of the community structure defined by RISA (Fig. 6.5-6.8). Further investigations, however, are needed to understand how oxygenation influences Fe- and Mn-specific bacteria and other members of the CCR sediment microbial community in order to optimize suppression of soluble Fe and Mn flux from the sediment.

6.5 Conclusions

A moderate response of the microbial community structure to oxygenation was observed in samples obtained near the HOx at the end of the 2006. Additionally, nucleic acid concentrations were typically elevated immediately alongside the HOx throughout the campaign and at all locations at the end of the campaign following ongoing oxygenation. However, a strong link between sediment microbial community structure and environmental variables in response to HOx operation was not found. Because a correlation between the environmental variables themselves (e.g., O$_2$ at the SWI and total and soluble metal concentrations in the sediment) and HOx operations was observed in previous work (Ch. 4 and 5, respectively), our microbial results indicate that sediment geochemical processes and the general microbial community composition may have been largely decoupled during certain time periods. Thus, while the CCR sediment microbial community is diverse (as indicated by the large number of phylotypes identified via RISA) and long-term HOx operation has the capacity to fundamentally affect the microbial community via changes in sediment O$_2$ availability, variation in community composition could not be sufficiently linked to HOx-induced changes in sediment O$_2$ concentration and other geochemical properties. The absence of an evident short-term shift in the microbial community structure in response to oxygenation may indicate that the significant HOx-induced variation in sediment-water Fe and Mn fluxes revealed in Ch. 5 was largely
abiologically controlled (Stein et al. 2002). Conversely, our results may be attributed to the ability of many bacteria to adapt to variations in sediment O₂ levels and utilize various electron acceptors, particularly over relatively short time scales (Thamdrup 2000). The microbial community may have easily adapted to both the month-long period when the sediment went anoxic after the HOx was turned off and also subsequent re-oxygenation (Fig. 6.2; Ch. 5). Long-term oxygenation combined with late-season influx of fresh organic matter may have been necessary to induce the changes in the microbial community observed at the final October sampling date.

The full effect of HOx-induced variation in sediment O₂ availability on community composition may also have been masked by the influence of background HOx operations. CCR had been continually oxygenated for the year prior to this field campaign and an oxic SWI had been maintained throughout the reservoir. The influence of HOx operation on sediment microbial community structure may have been more evident if microbial data from sediment in a back region of CCR that remains unaffected by HOx were also taken into account.

Through this study, insight was obtained on the relative significance of the environmental and geochemical variables assessed in the CCR system. Of the variables evaluated, HOx flow, distance from the HOx, sediment O₂ availability, and total Mn levels in the sediment were shown to have the greatest influence on variation in community composition. Our results suggest that while the sediment microbial community may not be drastically affected by HOx, some HOx-induced variation may occur (particularly in the near-field region following ongoing oxygenation) that merits further investigation. Characterizing the influence of sediment microbial and chemical processes on soluble metal flux suppression in response to HOx operations will ultimately help optimize lake and reservoir management.

6.6 Acknowledgements

The authors are extremely grateful to Francisco Vasquez and Krista Koellner who offered invaluable advice and support in the laboratory with microbial techniques. We thank Mary-Theresa Pendergast, Deric Learman, Jose Manuel Cerato, and Joseph Falkingham for assistance in identification of manganese-oxidizing bacteria. Kevin Elam, Elizabeth Rumsey, and the staff at Western Virginia Water Authority provided help in the field and with laboratory samples.
We acknowledge financial support from the National Science Foundation (NSF IGERT Program) and the Western Virginia Water Authority. The research described in this paper has also been funded in part by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA.

6.7 References

Table 6.1. Sediment sampling strategy and nomenclature used in microbial analytical techniques. Canonical correspondence analysis (CCA) sample identification based on the first digit to identify location (C, B, D, and E identifying sites CC, CB, C3, and CE, respectively), the second digit to identify sampling date in chronological order (i.e., 1 represents first sampling date July 12, 2006), and the third digit to indicate depth below the sediment surface in order of increasing depth (i.e., 2 represents second depth from sediment surface at 2-4 mm).

<table>
<thead>
<tr>
<th>site</th>
<th>date</th>
<th>depth (mm)</th>
<th>general sample ID</th>
<th>CCA sample ID</th>
<th>site</th>
<th>date</th>
<th>depth (mm)</th>
<th>general sample ID</th>
<th>CCA sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>7/12/06</td>
<td>0-2</td>
<td>CB-B1</td>
<td>B11</td>
<td>CB</td>
<td>7/12/06</td>
<td>0-2</td>
<td>CB-B1</td>
<td>B11</td>
</tr>
<tr>
<td>CB</td>
<td>7/12/06</td>
<td>2-4</td>
<td>CB-B2</td>
<td>B12</td>
<td>CB</td>
<td>7/12/06</td>
<td>0-2</td>
<td>CB-B1</td>
<td>B11</td>
</tr>
<tr>
<td>CB</td>
<td>7/12/06</td>
<td>4-6</td>
<td>CB-B3</td>
<td>B13</td>
<td>CB</td>
<td>8/2/06</td>
<td>0-2</td>
<td>CB-B1</td>
<td>B21</td>
</tr>
<tr>
<td>CB</td>
<td>7/12/06</td>
<td>10-12</td>
<td>CB-B4</td>
<td>B14</td>
<td>CB</td>
<td>8/2/06</td>
<td>2-4</td>
<td>CB-B2</td>
<td>B22</td>
</tr>
<tr>
<td>CB</td>
<td>8/2/06</td>
<td>4-6</td>
<td>CB-B3</td>
<td>B23</td>
<td>CB</td>
<td>8/2/06</td>
<td>10-12</td>
<td>CB-B4</td>
<td>B24</td>
</tr>
<tr>
<td>CB</td>
<td>8/2/06</td>
<td>0-2</td>
<td>CB-B1</td>
<td>B41</td>
<td>CB</td>
<td>8/28/06</td>
<td>2-4</td>
<td>CB-B2</td>
<td>B42</td>
</tr>
<tr>
<td>CB</td>
<td>8/28/06</td>
<td>2-4</td>
<td>CB-B2</td>
<td>B43</td>
<td>CB</td>
<td>10/19/06</td>
<td>4-6</td>
<td>CB-F3</td>
<td>B43</td>
</tr>
<tr>
<td>CC</td>
<td>7/12/06</td>
<td>0-2</td>
<td>CC-B1</td>
<td>C11</td>
<td>CC</td>
<td>7/12/06</td>
<td>2-4</td>
<td>CC-B2</td>
<td>C12</td>
</tr>
<tr>
<td>CC</td>
<td>7/12/06</td>
<td>4-6</td>
<td>CC-B3</td>
<td>C13</td>
<td>CC</td>
<td>7/12/06</td>
<td>4-6</td>
<td>CC-B3</td>
<td>C13</td>
</tr>
<tr>
<td>CC</td>
<td>7/12/06</td>
<td>10-12</td>
<td>CC-B4</td>
<td>C14</td>
<td>CC</td>
<td>8/2/06</td>
<td>0-2</td>
<td>CC-B1</td>
<td>C21</td>
</tr>
<tr>
<td>CC</td>
<td>8/2/06</td>
<td>2-4</td>
<td>CC-R2</td>
<td>C22</td>
<td>CC</td>
<td>8/2/06</td>
<td>4-6</td>
<td>CC-R3</td>
<td>C23</td>
</tr>
<tr>
<td>CC</td>
<td>8/2/06</td>
<td>10-12</td>
<td>CC-B4</td>
<td>C24</td>
<td>CC</td>
<td>8/28/06</td>
<td>0-2</td>
<td>CC-R1</td>
<td>C31</td>
</tr>
<tr>
<td>CC</td>
<td>8/28/06</td>
<td>2-4</td>
<td>CC-B2</td>
<td>C32</td>
<td>CC</td>
<td>8/28/06</td>
<td>4-6</td>
<td>CC-B3</td>
<td>C33</td>
</tr>
<tr>
<td>CC</td>
<td>10/19/06</td>
<td>0-2</td>
<td>CC-B1</td>
<td>C41</td>
<td>CC</td>
<td>10/19/06</td>
<td>2-4</td>
<td>CC-B2</td>
<td>C42</td>
</tr>
<tr>
<td>CC</td>
<td>10/19/06</td>
<td>4-6</td>
<td>CC-B3</td>
<td>C43</td>
<td>CC</td>
<td>10/19/06</td>
<td>4-6</td>
<td>CC-B3</td>
<td>C43</td>
</tr>
<tr>
<td>CE</td>
<td>7/12/06</td>
<td>0-2</td>
<td>CE-R1</td>
<td>E11</td>
<td>CE</td>
<td>7/12/06</td>
<td>2-4</td>
<td>CE-R2</td>
<td>E12</td>
</tr>
<tr>
<td>CE</td>
<td>7/12/06</td>
<td>4-6</td>
<td>CE-R3</td>
<td>E13</td>
<td>CE</td>
<td>7/12/06</td>
<td>10-12</td>
<td>CE-R4</td>
<td>E14</td>
</tr>
<tr>
<td>CE</td>
<td>8/2/06</td>
<td>0-2</td>
<td>CE-R1</td>
<td>E21</td>
<td>CE</td>
<td>8/2/06</td>
<td>2-4</td>
<td>CE-R2</td>
<td>E22</td>
</tr>
<tr>
<td>CE</td>
<td>8/2/06</td>
<td>4-6</td>
<td>CE-R3</td>
<td>E23</td>
<td>CE</td>
<td>8/2/06</td>
<td>10-12</td>
<td>CE-B4</td>
<td>E24</td>
</tr>
<tr>
<td>CE</td>
<td>8/28/06</td>
<td>0-2</td>
<td>CE-F1</td>
<td>E31</td>
<td>CE</td>
<td>8/28/06</td>
<td>2-4</td>
<td>CE-B2</td>
<td>E32</td>
</tr>
<tr>
<td>CE</td>
<td>8/28/06</td>
<td>4-6</td>
<td>CE-B3</td>
<td>E33</td>
<td>CE</td>
<td>10/19/06</td>
<td>0-2</td>
<td>CE-B1</td>
<td>E41</td>
</tr>
<tr>
<td>CE</td>
<td>10/19/06</td>
<td>2-4</td>
<td>CE-R2</td>
<td>E42</td>
<td>CE</td>
<td>10/19/06</td>
<td>2-4</td>
<td>CE-B2</td>
<td>E42</td>
</tr>
<tr>
<td>CE</td>
<td>10/19/06</td>
<td>4-6</td>
<td>CE-B3</td>
<td>E43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.1. Map of Carvin’s Cove Reservoir (CCR) showing sampling sites for microbial analyses (near field locations CC and CVCB; central, mid-reservoir locations C1, C2, C3, and CE; back-reservoir location CR) and linear bubble-plume hypolimnetic oxygenation system (HOx).
Figure 6.2. Oxygen flow rates of the CCR HOx and dates of sediment core sampling. The HOx was turned off in CCR from mid-June to mid-July 2006 to re-establish anoxic conditions. Following this period, HOx operations were resumed and oxygen gas flow was increased to the maximum possible flow rate (~100 m3 hr$^{-1}$). This experiment was designed to demonstrate how increasing levels of turbulence and dissolved oxygen (O_2) in the overlying water column impacted sediment-water fluxes (Fe, Mn, O_2) at the sediment-water interface and microbial communities within the sediment. Sediment samples for microbial analyses were collected on the dates indicated by vertical green lines.
Figure 6.3. Gel image of ribosomal intergenic spacer analysis (RISA) of rRNA isolated from CCR sediment showing variable banding patterns indicating different sediment bacteria phylotypes. Lanes 1, 6, and 11 contain size markers (sizes indicated by base pairs at left) and lanes 12 and 13 are positive and negative controls. Samples (corresponding dates and depths from sites CC (lanes 2-5) and CE (lanes 7-10)) are coded per canonical correspondence analysis (CCA) sample labels defined in Table 6.1.
<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Time (m/d/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site CC</td>
<td>7/12/06</td>
<td>7/12/06</td>
</tr>
<tr>
<td></td>
<td>8/2/06</td>
<td>8/2/06</td>
</tr>
<tr>
<td></td>
<td>8/28/06</td>
<td>8/28/06</td>
</tr>
<tr>
<td></td>
<td>10/19/06</td>
<td>10/19/06</td>
</tr>
<tr>
<td>Site CBCV</td>
<td>7/12/06</td>
<td>7/12/06</td>
</tr>
<tr>
<td></td>
<td>8/2/06</td>
<td>8/2/06</td>
</tr>
<tr>
<td></td>
<td>8/28/06</td>
<td>8/28/06</td>
</tr>
<tr>
<td></td>
<td>10/19/06</td>
<td>10/19/06</td>
</tr>
<tr>
<td>Site CE</td>
<td>7/12/06</td>
<td>7/12/06</td>
</tr>
<tr>
<td></td>
<td>8/2/06</td>
<td>8/2/06</td>
</tr>
<tr>
<td></td>
<td>8/28/06</td>
<td>8/28/06</td>
</tr>
<tr>
<td></td>
<td>10/19/06</td>
<td>10/19/06</td>
</tr>
<tr>
<td>Site C3</td>
<td>7/12/06</td>
<td>7/12/06</td>
</tr>
<tr>
<td></td>
<td>8/2/06</td>
<td>8/2/06</td>
</tr>
<tr>
<td></td>
<td>8/28/06</td>
<td>8/28/06</td>
</tr>
<tr>
<td></td>
<td>10/19/06</td>
<td>10/19/06</td>
</tr>
</tbody>
</table>

Figure 6.4. Nucleic-acid-concentration data obtained via PicoGreen analyses. Per sampling date, increasing sample depth is indicated by a darker shade of blue: light blue (0-2 mm), turquoise (2-4 mm), medium blue (4-6 mm), and dark blue (1-1.2 mm).
Figure 6.5. Average linkage hierarchical cluster analysis of community similarity (Raup-Crick distances) of CCR sediment samples based on presence-absence data of RISA phylotypes. Sampling site, depth and date are coded per CCA sample labels defined in Table 6.1.
Figure 6.6. Biplots of ordination analysis of the RISA community dataset and environmental variables. (a) CCA using a constrained model to analyze the full set of CCR samples. RISA community composition data are correlated to variables time, HOx flow, distance from the HOx (Dist), sample depth, and O₂ (O₂_d) at the sediment surface (as indicated by blue axes). (b) Detrended (unconstrained) correspondence analysis (DCA) of the same dataset. Environmental variables are passively fitted. Black open circles are samples and red crosses are individual bacterial phylotypes identified by RISA bands. CCA (a) and DCA (b) sample labels are identically coded per CCA sample labels in Table 6.1.
Figure 6.7. Constrained CCA ordination including all environmental (geochemical) variables. A reduced dataset excluding samples for which geochemical data were not available was used for this CCA. Time variable omitted due to correlation with HOx flow. Samples coded per CCA sample labels in Table 6.1.
Figure 6.8. Constrained CCA ordination specifically for site CC which includes soluble Fe and Mn data obtained via in situ porewater analyzer (peeper). Samples coded per CCA sample labels in Table 6.1.
Chapter 7 – Global impacts and future work

7.1 Global impacts

Current water supply issues become even more significant in light of climate change (Arnell 1999). For example, global warming will likely cause enhanced thermal stratification in many water bodies, which could lead to unprecedented increases in deep-water anoxia (Jankowski et al. 2006). Water quality and aquatic biodiversity are strongly affected by decreased O₂ levels (Glud 2008), as supported by our results showing significantly increased fluxes of soluble metals from the sediment during periods when the sediment became anoxic. The full extent to which sediment microbial community structure adapts to variable sediment O₂ availability has yet to be determined. Climate-change-induced shifts in microbial communities controlling carbon flux could contribute even further to the global warming crisis as decreased O₂ levels cause increased fluxes of reduced species (e.g., methane) from the sediment in aquatic systems. Greenhouse gas emissions from lake and reservoir surfaces are estimated to already be equivalent to ~7% of the global warming potential from anthropogenic sources (St. Lois et al. 2000); hence, this could be a considerable issue. As emphasized by our research, (1) understanding the mechanisms controlling sediment-water fluxes under dynamic environmental and/or limiting O₂ conditions and (2) evaluating alternative approaches to preserving hypolimnetic O₂ and subsequent water quality are therefore critical to alleviating future demands on our water supplies, which are already approaching a critical state (Berndes 2002).

Many of the insights on the mass transfer and redox mechanisms defining sediment-water fluxes of O₂, Fe, and Mn gained through this research can be used to elucidate biogeochemical cycling of other chemical species as well. Hox can be used to address issues with increased levels of soluble species such as phosphorus, ammonia, hydrogen sulfide, and methane resulting from O₂ depletion. Furthermore, it has recently been shown that elevated Mn levels are creating an additional threat to some areas of Bangladesh where arsenic (As) poisoning from groundwater-supplied drinking water is prevalent; paired As and Mn release was found to be strongly controlled by the redox environment of the groundwater (Buschmann et al. 2007). Results from our research will clearly be applicable to drinking water issues on a global scale.
7.2 Future work

This research promotes the use of an interdisciplinary approach for the management of our water supplies, from both a water quality and ecosystem perspective. Two longer-term goals of this project are to (1) develop specific guidelines for water utilities to optimize design and operational parameters of HOx and (2) quantify improvements to overall aquatic ecosystem health via such measures as benthic biodiversity counts, species richness and health assessments of fish populations, and a survey of recreational patrons of CCR (e.g., boaters, fishermen).

Based on a proposal the author wrote building on this doctoral work, she will be funded by NSF to perform postdoctoral research that further explores the complexity of the Mn redox cycle, the influence of microbial activity at the SWI, and how these processes relate with respect to source and drinking water quality. During this postdoctoral work, recently-developed voltammetric microelectrodes specific for O₂, Fe²⁺, and Mn²⁺ (Brendel and Luther 1995) will be used to more-precisely quantify Fe and Mn dynamics at the SWI. Additional microbial work will be performed to comprehensively characterize how O₂ availability affects microbial processes controlling Mn cycling, with focus on Mn-reducers. The proposed combination of analytical methods will allow assessment of the general impact of oxygenation on microbial community structure (e.g., using general bacterial or group-specific protocols) and specific tracking of microbes known to be involved in Mn release (e.g. G. metallireducens, S. putrefaciens, using quantitative tools such as q-PCR). A one-dimensional model utilizing the sediment module of the aquatic system modeling program AQUASIM will also be developed to enable accurate predictions of Mn biogeochemical fluxes and sediment oxic zone depths (Reichert 1994; Brand et al. 2009).

Ultimately, our work will hopefully contribute to the shifting perspective on how we consume and protect our water resources. This highly-interdisciplinary doctoral research characterized sediment-water fluxes and subsequent effects on water quality using knowledge and theory from the fields of limnology, aquatic physics, biogeochemistry, soil science, microbiology, and environmental engineering. In doing so, the importance of approaching a research problem from many different scientific perspectives in order to obtain comprehensive and innovative solutions is emphasized. The closing line of an article on “The Practical Value of Science” appropriately reflects the interdisciplinary and societal aspects of this work; ironically,
the article was published 130 years ago in the very first issue of *Science*. “An Industry attains higher stages of its development as its processes become more complicated and refined, and the sciences are dragged in, one by one, to take their share in the fray” (Huxley 1880).

7.3 References

Appendix A – Supporting data for Chapter 4 (Oxygenation-induced variation in sediment oxygen uptake)

Figure A.1 – Correlation between diffusive boundary layer thickness (δ_{DBL}) estimates obtained using in situ water-side ($\delta_{\text{DBL-W}}$) and sediment-side ($\delta_{\text{DBL-S}}$) oxygen (O$_2$) microprofile data.

Figure A.2 – Comparison of near-sediment current velocity and wind speed time series. Average wind speed based on three-hour time blocks.

Figure A.3 – Correlation between J_{O2} and water-side δ_{DBL} based on in situ MP4 data from 2007-2008.
Figure A.1. Correlation between diffusive boundary layer thickness (δ_{DBL}) estimates obtained using in situ water-side (δ_{DBL-W}) and sediment-side (δ_{DBL-S}) oxygen (O$_2$) microprofile data.

Figure A.2. Comparison of near-sediment current velocity and wind speed time series. Average wind speed based on three-hour time blocks.
Figure A.3. Correlation between J_{O2} and water-side δ_{DBL} based on O$_2$ microprofile data from 2007-2008.
Appendix B – Supporting data for Chapter 5 (Biogeochemical cycling of iron and manganese at the sediment-water interface in response to hypolimnetic oxygenation)

Table B.1 – Comparison of sediment core and in situ MP4 microprofiler data from summer 2007. Hypolimnetic oxygenation flow rate is in m3 hr$^{-1}$, sediment oxygen uptake rate (J_{O2}) is in mmol m$^{-2}$ d$^{-1}$, oxygen concentration at the sediment-water interface (C_{SWI}) is in μmol L$^{-1}$, and diffusive boundary layer thickness (δ_{DBL}) and depth of the sediment oxic zone (z_{max}) are in mm.

Figure B.2 – Contour plots based on peeper data obtained mid-reservoir (site C3) and corresponding HOx flow pattern during 2007 and 2008. C3 peeper data for 2006 were unavailable due to equipment limitations.

Figure B.3 – Total and soluble Fe and Mn data obtained from near-sediment core water samples collected throughout 2008 HOx operations. Samples were collected near the HOx (site CVCB; a) and mid-reservoir at sites C3 (b) and C2 (c). Corresponding peeper data (for profile depth 5 cm above the SWI) are included to verify core water sample data. As discussed in Ch. 4, an experimental campaign focused specifically on site CVCB was performed in June 2008, hence the increased number of data points during this period in (a). A similar campaign was performed at C3 during August 2008 (b). Data characterizing the back-region of the reservoir (CR; Fig. 5.1) is provided in (c).
Table B.1. Comparison of sediment core and in situ MP4 microprofiler data from summer 2007. Hypolimnetic oxygenation flow rate is in m3 hr$^{-1}$, sediment oxygen uptake rate (J_{O2}) is in mmol m$^{-2}$ d$^{-1}$, oxygen concentration at the sediment-water interface (C_{SWI}) is in μmol L$^{-1}$, and diffusive boundary layer thickness (δ_{DBL}) and depth of the sediment oxic zone (z_{max}) are in mm.

<table>
<thead>
<tr>
<th>Date</th>
<th>Site</th>
<th>Flow</th>
<th>C_{SWI}</th>
<th>J_{O2}</th>
<th>δ_{DBL}</th>
<th>z_{max}</th>
<th>C_{SWI}</th>
<th>J_{O2}</th>
<th>δ_{DBL}</th>
<th>z_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/22/07</td>
<td>CVCB</td>
<td>34</td>
<td>2.9</td>
<td>3.9</td>
<td>2.0</td>
<td>0.0</td>
<td>7.8</td>
<td>0.6</td>
<td>5.0</td>
<td>1.0</td>
</tr>
<tr>
<td>6/6/07</td>
<td>CVCB</td>
<td>51</td>
<td>4.9</td>
<td>9.7</td>
<td>1.3</td>
<td>0.0</td>
<td>17.2</td>
<td>1.3</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>6/18/07</td>
<td>CVCB</td>
<td>51</td>
<td>24.1</td>
<td>1.7</td>
<td>1.0</td>
<td>1.0</td>
<td>65.0</td>
<td>1.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>7/2/07</td>
<td>CVCB</td>
<td>68</td>
<td>75.3</td>
<td>6.1</td>
<td>0.9</td>
<td>1.0</td>
<td>65.6</td>
<td>4.9</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>7/17/07</td>
<td>CVCB</td>
<td>85</td>
<td>42.5</td>
<td>3.9</td>
<td>0.6</td>
<td>1.5</td>
<td>118.8</td>
<td>2.0</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>5/22/07</td>
<td>C3</td>
<td>34</td>
<td>38.6</td>
<td>2.6</td>
<td>1.5</td>
<td>2.2</td>
<td>57.7</td>
<td>0.7</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>6/6/07</td>
<td>C3</td>
<td>51</td>
<td>61.5</td>
<td>4.0</td>
<td>3.0</td>
<td>2</td>
<td>40.6</td>
<td>2.8</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>6/18/07</td>
<td>C3</td>
<td>51</td>
<td>68.0</td>
<td>6.1</td>
<td>2.5</td>
<td>1.4</td>
<td>19.5</td>
<td>3.2</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>7/2/07</td>
<td>C3</td>
<td>68</td>
<td>139.7</td>
<td>10.2</td>
<td>2.0</td>
<td>2.0</td>
<td>98.8</td>
<td>6.1</td>
<td>2.5</td>
<td>4.0</td>
</tr>
<tr>
<td>7/17/07</td>
<td>C3</td>
<td>85</td>
<td>66.9</td>
<td>5.8</td>
<td>2.5</td>
<td>1.5</td>
<td>76.2</td>
<td>4.5</td>
<td>2.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Figure B.2. Contour plots based on peeper data obtained mid-reservoir (site C3) and corresponding HOx flow pattern during 2007 and 2008. C3 peeper data for 2006 were unavailable due to equipment limitations.
Figure B.3. Total and soluble Fe and Mn data obtained from near-sediment core water samples collected throughout 2008 HOx operations. Samples were collected near the HOx (site CVCB; a) and mid-reservoir at sites C3 (b) and C2 (c). Corresponding peeper data (for profile depth 5 cm above the SWI) are included to verify core water sample data. As discussed in Ch. 4, an experimental campaign focused specifically on site CVCB was performed in June 2008, hence the increased number of data points during this period in (a). A similar campaign was performed at C3 during August 2008 (b). Data characterizing the back-region of the reservoir (CR; Fig. 5.1) is provided in (c).
Appendix C – Microbial method procedures

Appendix C.1 – Nucleic acid extraction

Appendix C.2 – DNA quantification with PicoGreen

Appendix C.3 – PCR program
Appendix C.1 – Nucleic acid extraction

Detailed protocol for DNA extraction
Lake Sediment version, Sept. 2007

By Helmut Bürgmann
Reference to Bürgmann et al. 2001, 2003

Reagents:
"CTAB+ Buffer" (Manuel Pesaro):

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount for 500 ml</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂HPO₄</td>
<td>13.23 g</td>
<td>Phosphate Buffer, pH 8 200 mM</td>
</tr>
<tr>
<td>(oder Na₂HPO₄*2 H₂O)</td>
<td>16.59 g</td>
<td></td>
</tr>
<tr>
<td>NaH₂PO₄* 2 H₂O</td>
<td>1.06 g</td>
<td></td>
</tr>
<tr>
<td>CTAB (Hexadodecyltrimethyl-</td>
<td>1 g</td>
<td>0.2%</td>
</tr>
<tr>
<td>ammonium bromide)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTT (1 M aq solution)</td>
<td>0.5 ml</td>
<td>from frozen stock</td>
</tr>
<tr>
<td>NaCl (keep a clean stock for</td>
<td>2.92 g</td>
<td>0.1 M</td>
</tr>
<tr>
<td>molecular work)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na-EDTA</td>
<td>9.31 g</td>
<td>50 mM</td>
</tr>
</tbody>
</table>

Sterilize by filtration (0,2 µm). Add DTT fresh, and use for no more than two weeks after adding DTT.

Store all buffers at 4°C. Dissolve precipitates prior to use.
Appendix C.1 – Nucleic acid extraction

Phenol (pH 8.0)
is prepared using RNase-free Tris-Buffer (pH 8). Avaialbe commercially, prepare as described by manufacturer. Check pH prior to use, and keep under a layer of buffer.

Chloroform-Isoamyl alcohol (CIA):
Mix 1 part isoamylalcohol and 24 parts chloroform (puriss.). Prepare in baked or chloroform-rinsed volumetric cylinder (e.g. 240 ml chloroform, make to 250 ml with isoamylalcohol (3-methyl-1butanol). Store in baked glassware.

DEPC treated H2O:
Autoclave H2O bidest. Add 0,1% (v/v) DEPC. Incubate 12h at 37°C. Autoclave again.

PEG precipitation solution (PEG):
PEG 6000 20% (w/v)
NaCl 2,5M
H2O, PCR grade, sterile
Treat with 0,1% DEPC before autoclaving

Ethanol 70%, from 36 ml EtOH puriss. Made to 50 ml with 0,1% DEPC treated or certified water. Mix in sterile Falcon Tube

Isopropanol (puriss.), in baked glassware

Glass beads (0,10-0,11mm diameter), bake at 200°C for 12 h.

Ice

Material:
Fastprep Machine
Eppendorf tubes, 2 / 1,5 / 0,5 ml
Pipettes for 1ml, 200µl, 100µl, with filter tips.
Suction device for removing supernatants.
Microcentrifuge
Hood
Appendix C.1 – Nucleic acid extraction

Protocol:
General: Work under a hood (phenol and chloroform are poisonous). If possible keep centrifuge in the hood too (it generates a lot of phenol-aerosol). Wear gloves to protect tubes from RNAse from your skin. Powder-free gloves are best. Use fresh, autoclaved plasticware, and use gloves to handle it. If using glassware sterilize and decontaminate it before use (Rinse with Chloroform and bake at 250°C for 12h). Wipe workplace with 70% Ethanol and 3% H2O2 for decontamination. Be careful to keep reagents RNAse free (use DEPC where possible (but not with TRIS!), keep sterile, store in fridge, prepare small volumes). Work as quick and as cool as possible to minimize RNAse activity. Calculate 5-7h to complete protocol.

Nucleic acid extraction:

- Remove Phenol and CTAB+ buffer from fringe and bring to room temperature. Dissolve all precipitates in buffer. Add DTT, if using fresh buffer.
- Weigh 0.75g glass beads into 2 ml Eppendorf tubes.
- Weigh 0.5g wet sediment into the tubes (In order to calculate DNA or RNA content, determine water content for separate soil sample).
- Add 1.25 ml cold CTAB+ buffer (pipette 2 x 625 µl).
- In dismembrator, process 3 x 80 s at 3000rpm. Cool on ice for 1 min between beatings. Centrifuge for 5 min at 13200 rpm (max speed).
- Transfer supernatant (ca. 1000 µl) to new 2 ml tube. Add 400µl Phenol (pH 8) and 400 µl CIA. Vortex for 15 s (or until suspension forms). Centrifuge 5 min at max speed (13200 rpm), 25°C.
- Transfer supernatant to fresh 2 ml tube (ca. 950 µl). Do not touch interface with pipette tip.
- Add 800 µl CIA. Vortex for 20 s, centrifuge 5 min at 13200 rpm, 25°C.
- Transfer 900 µl of supernatant to fresh 2 ml tube (Store at –80°C if necessary). Add one volume (ca. 900 µl) PEG. Mix by inverting. Incubate for 1h at 37°C. Centrifuge 30 min at max speed (13200 rpm) at 25°C. Pellet should be light to dark brown in color.
- Pre-cool centrifuge to 4°C.
- Remove supernatant with aspirator.
- Add 500 µl ice-cold Ethanol swirl gently to wash pellet (Store at –80°C if necessary). Centrifuge 5 min at max speed (13200 rpm). Remove supernatant with aspirator.
- Let pellet dry on air for a few minutes (or Speedvac), protect from dust by covering loosely with aluminum foil or placing in laminar flow chamber. As soon as Ethanol is no longer visible, add 50 µl TE. Vortex well to dissolve. Keep on ice, store at -20°C (-80°C if work with RNA is planned).
Appendix C.2 – DNA quantification with PicoGreen

Appendix C.2 – DNA quantification with PicoGreen

DNA quantitation with PicoGreen
Bürgmann Lab 2007

Based on Quant-it dsDNA quantitation kit from Invitrogen (P7589)
(Difference to kit protocol: We dilute the sample, and we use pre-diluted standards instead of diluting standards on the plate)

Material:
Quant-it dsDNA quantitation kit (PicoGreen, lambda DNA stock (100 ug / ml), 20x TE)
Sterile (Nanopur, autoclaved) H2O
Black 96 well plates
Plate reader (Synergy HT) and software (KC4)
PCR workbench (Work in sterile bench while loading 96 well plate)

Protocol:
1. Take kit from fridge. Allow PicoGreen to thaw completely. Keep picogreen away from light.
2. Use PicoGreen calculation sheet to calculate Master Mix and needed standards.
 - 1 μl sample recommended for extracts high in humi acids
 - 5 μl or higher for clean but low concentration samples
 - For easy pipetting and calculation, use same volume for standards and samples.
4. Prepare standards:
 - quantify stock solution on nanodrop
 - prepare dilution series as calculated
 - keep standards on ice
5. Prepare the Master Mix (required amount as calculated)
6. Distribute Master Mix on plate (refer to plate layout) using pipette, stepper or multichannel pipette as appropriate (volume according to calculation sheet, usually 399 or 395 μl).
7. Add sample (per sheet, usually 1 or 5 μl) to each well (refer to and mark plate layout you printed to keep track of samples, if necessary).
8. Start read in KC4 software, fill out the info window, load your plate.
9. After read has finished, print and save your results. Remove plate and wash it.
10. Store Kit and standard stock at 4°C.
Appendix C.3 – PCR program

PCR general protocol:

1) Take mix supplies out of fridge – thaw.

2) Make dilutions of samples (200 uL tubes).

3) Make reaction mix (H2O, PCR buffer, Mg CL2, primer forward, primer reverse, dNTP, BSA). Gently centrifuge.

4) Add 44 uL of mix (step 2) and 1 uL of sample to new small tube: PCR sample.

5) Prepare positive (e.coli) and negative (water) samples (1 uL each) with 44 uL reaction mix for positive and negative controls.

7) Put tubes in PCR machine. (DNA samples, +/- controls, and 100 bp marker at beginning and end)

8) Add 5 uL of Taq mix to each tube.

9) Start PCR (~ runs about 3-4 hours).

10) Run PCR product samples on agarose gels.
<table>
<thead>
<tr>
<th>Date</th>
<th>4/23/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>27f_1492R</td>
</tr>
<tr>
<td>T (°C)</td>
<td>94</td>
</tr>
<tr>
<td>Time [mm:ss]</td>
<td>5:00</td>
</tr>
</tbody>
</table>

Expected size of Product: 1465

<table>
<thead>
<tr>
<th>Amount of DNA sample</th>
<th>1 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reactions</td>
<td>11 samples and controls</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>4/23/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>27f_1492R</td>
</tr>
<tr>
<td>T (°C)</td>
<td>94</td>
</tr>
<tr>
<td>Time [mm:ss]</td>
<td>5:00</td>
</tr>
</tbody>
</table>

Total Reaction Volume: 50 µl

Expected size of Product: 1465

<table>
<thead>
<tr>
<th>Amount of DNA sample</th>
<th>1 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reactions</td>
<td>11 samples and controls</td>
</tr>
</tbody>
</table>

Summe

dNTP stock

| Total dNTP needed | Prepare: 10 µl of each dNTP stock solution + 80 µl H2O (PCR grade) | 5.2 µl minimum dNTP |

Given final concentrations:

<table>
<thead>
<tr>
<th>Reaction mix/Volume</th>
<th>Stock solution</th>
<th>Final Concentration</th>
<th>Per reaction</th>
<th>Prepare for all</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>32.15 µl</td>
<td>417.95 µl</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>MgCl2</td>
<td>10 times</td>
<td>1 times</td>
<td>65.00 µl</td>
<td>PCR Buffer</td>
</tr>
<tr>
<td>Primer forward</td>
<td>25 mM</td>
<td>6.00 µl</td>
<td>78.00 µl</td>
<td>MgCl2</td>
</tr>
<tr>
<td>Primer reverse</td>
<td>0.2 µM</td>
<td>0.10 µl</td>
<td>1.30 µl</td>
<td>Primer forward</td>
</tr>
<tr>
<td>dNTP</td>
<td>25 mM</td>
<td>0.40 µl</td>
<td>5.20 µl</td>
<td>dNTP</td>
</tr>
<tr>
<td>BSA</td>
<td>10 mg/ml</td>
<td>5.00 µl</td>
<td>65.00 µl</td>
<td>BSA</td>
</tr>
<tr>
<td>Taq</td>
<td>0.025 µl</td>
<td>3.25 µl</td>
<td>Taq</td>
<td></td>
</tr>
</tbody>
</table>

DNA sample

| Final volume correct? | 50.00 µl |

Given Volumes per Reaction:

<table>
<thead>
<tr>
<th>Reaction mix/Volume</th>
<th>Stock solution</th>
<th>Per Reaction</th>
<th>Final Concentration</th>
<th>Prepare for all</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>32.15 µl</td>
<td>417.95 µl</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>PCR Buffer</td>
<td>10 times</td>
<td>5.00 µl</td>
<td>65.00 µl</td>
<td>PCR Buffer</td>
</tr>
<tr>
<td>MgCl2</td>
<td>25 mM</td>
<td>6.00 µl</td>
<td>78.00 µl</td>
<td>MgCl2</td>
</tr>
<tr>
<td>Primer forward</td>
<td>0.10 µl</td>
<td>0.20 µl</td>
<td>Primer forward</td>
<td></td>
</tr>
<tr>
<td>Primer reverse</td>
<td>0.10 µl</td>
<td>0.20 µl</td>
<td>Primer reverse</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>25 mM</td>
<td>5.20 µl</td>
<td>dNTP</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>10 mg/ml</td>
<td>65.00 µl</td>
<td>BSA</td>
<td></td>
</tr>
<tr>
<td>Taq</td>
<td>0.25 µl</td>
<td>3.25 µl</td>
<td>Taq</td>
<td></td>
</tr>
</tbody>
</table>

Summe

| Final volume correct? | 50.00 µl |

DNA sample

| Final volume correct? | 50.00 µl |

198
Appendix D – Copyright permission

Official permission from the journal *Limnology & Oceanography* to reproduce material in Chapter 2 of this dissertation. Copyright permission was obtained for this chapter as this work was published prior to submission of this dissertation document to Virginia Tech.
Dear Ms. Bryant,

On behalf of the American Society of Limnology & Oceanography, you can use the text as well as the figure.

Sincerely,

Mrs. Jo Davis
ASLO Business Office
c/o The Schneider Group

Date: Wed, 24 Mar 2010 09:13:32 -0500
To: lebryan1@vt.edu
From: Jo Davis <jldavis@sgmeet.com>
Subject: ASLO Copyright Permission

To: Ms. Lee D. Bryant,

On behalf of the American Society of Limnology and Oceanography, we are happy to grant permission to use the figures from Limnology & Oceanography per your application below.

When reproducing the article/figure(s), please cite according to the references that follow:

All copyrighted works, whether displayed electronically or in print, should be properly acknowledged as follows:

"Copyright (Year) by the American Society of Limnology and Oceanography, Inc."

Once permission is granted to use an article or any part thereof of a work from L&O, the full citation must include:
1. Name(s) of the author(s);
2. Journal title (Limnology & Oceanography or L&O)
3. Publication date
4. Volume number
5. Issue number
6. Chapter or article name

3/24/2010
7. Pages on which the articles, data, and/or figure(s) appear

For your records, the American Society of Limnology and Oceanography is a nonprofit organization. (Taxpayer I.D. Number: 38-1710020)

If you have additional requests or have any questions in regard to this request, you can contact me directly via e-mail at j.davis@sgmeet.com.

Sincerely,

Jo Davis
ASLO Business Office

Will the copyrighted material appear in a for-profit publication?

no

Will the copyrighted material appear in a not-for-profit publication?

yes

Proposed Publication Date: April 2010

REQUESTOR INFORMATION
Requestor: Ms. Lee D. Bryant
Contact's Name (if different):
Institution: Virginia Tech
Department: Civil and Environmental Engineering
Mailing Address:
418 Durham Hall
Blacksburg, Virginia 24061
USA
Telephone: 865-803-7716
Fax: 540-231-7916
Email: lebryan1@vt.edu

INTENDED USE
Publication in which material will appear:
Lee Bryant's doctoral dissertation entitled "Dynamic forcing of oxygen, iron, and manganese fluxes at the sediment-water interface in lakes and reservoirs";
Publisher: Virginia Tech via UMI Company

MATERIAL TO BE USED
Author(s) Name(s): Bryant, L. D., C. Lorrai, D. F. McGinnis, A. Brand, A. Wuest, and J. C. Little
Journal Title: Limnology and Oceanography
Publication Date: 2010
Volume: 55
Issue: 2
Chapter, article or figure name or title: Variable sediment oxygen uptake in response to dynamic forcing
Pages on which articles, data or figures appear: 950-964
Special notes: