Title page for ETD etd-04122012-195537

Type of Document Dissertation
Author Cheever, Beth Marie
URN etd-04122012-195537
Title Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams.
Degree PhD
Department Biological Sciences
Advisory Committee
Advisor Name Title
Webster, Jackson R. Committee Chair
Barrett, John E. Committee Member
Benfield, Ernest Fredrick Committee Member
Dolloff, C. Andrew Committee Member
Valett, H. Maurice Committee Member
  • organic matter decomposition
  • consumer nutrient recycling
  • ecological stoichiometry
  • streams
  • nitrogen cycling
Date of Defense 2012-03-30
Availability unrestricted
I investigated the drivers of nutrient cycling by heterotrophic microbes during leaf decomposition in streams. My research addressed two overarching questions: 1) how do exogenous and endogenous factors interact to drive microbial nitrogen (N) cycling during organic matter decomposition in stream ecosystems, and 2) what affect will the global increase in biologically active N have on these factors and resulting fluxes? I conducted studies in natural streams and laboratory mesocosms to address these questions and used general stoichiometric theory to conceptualize diverse microbial assemblages as a single functional unit within stream ecosystems.

First, I described spatial and temporal patterns of N and phosphorus uptake and mineralization by leaf-associated microbial assemblages in five southern Appalachian streams which spanned a gradient of nitrate availability. I found wide variations in nutrient fluxes across time and space, perhaps due to macroinvertebrate-induced changes in microbial assemblage composition. Secondly, I explored the roles of endogenous and exogenous N in meeting microbial requirements. I isolated microbial biomass from leaves that had been labeled with N-15 and incubated in the same five Appalachian streams. The importance of exogenous N increased as decomposition progressed and was particularly important in streams with high N availability. Finally, I tested potential interactions between two exogenous drivers of microbial nutrient cycling: N availability and animal activity. I used mesocosms to test the effects of consumer nutrient recycling (CNR) and grazing by two shredders on microbial uptake under different N regimes. Animals only influenced microbial uptake under low N conditions. Shredder CNR generally stimulated uptake while grazing had a negative effect.

My research provides a robust model describing N cycling by detritus-associated microbes over the course of decomposition. According to this model, microbes assimilate endogenous N during the initial stages of decomposition and immobilization of exogenous N becomes more important as decomposition progresses. The labeled substrate technique that I used to generate this model is an elegant way of testing the applicability of this model in other ecosystems. My results also suggest that anthropogenic activities that increase exogenous N availability have implications for N and C cycling in lotic systems.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Cheever_BM_D_2012.pdf 1.03 Mb 00:04:46 00:02:27 00:02:08 00:01:04 00:00:05
  Cheever_BM_D_2012_Copyright.pdf 197.80 Kb 00:00:54 00:00:28 00:00:24 00:00:12 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.