Title page for ETD etd-04132000-19160016

Type of Document Dissertation
Author Karabay, Arzu -
Author's Email Address akarabay@vt.edu
URN etd-04132000-19160016
Title Ncd Motor Tail Domain Interactions With Microtubules
Degree PhD
Department Biology
Advisory Committee
Advisor Name Title
Walker, Richard A. Committee Chair
Esen, Asim Committee Member
Rutherford, Charles L. Committee Member
Winkel, Brenda S. J. Committee Member
Wong, Eric A. Committee Member
  • NCD
Date of Defense 2000-03-30
Availability unrestricted
Drosophila nonclaret disjunctional (Ncd) is a kinesin-like C-terminal motor protein that is involved in spindle assembly in oocytes during meiosis and in spindle maintenance in early embryos during mitosis. Ncd interacts with both "highway" and "cargo" microtubules (MTs) in meiotic and mitotic spindles through the action of ATP-dependent and ATP-independent MT binding sites in the head and tail domains, respectively. Through the action of these binding sites, Ncd bundles and, perhaps, slides MTs relative to each other. These functions are important for the in vivo role of Ncd in the formation of the bipolar spindle and maintenance of the spindle assembly.

Despite the high homology of the Ncd head domain to the kinesin head domain, the Ncd tail domain is unique among kinesin-like motor proteins. Characterization of ATP-independent interactions of Ncd with cargo MTs and identification of MT binding sites (located in amino acid residues 83-100 and 115-187) in the tail region by MT co-sedimentation assays revealed that the Ncd tail has functional similarities to microtubule-associated proteins, especially to tau and MAP2, that regulate MT assembly. Like tau MT binding motifs, MT binding sites of the tail domain are rich in basic amino acids that are flanked by proline residues. Cross-linking and MT co-sedimentation assays with subtilisin-digested MTs demonstrated that Ncd tail binding sites (located at the extreme C-terminus and in the H11-H12 loop / H12 helix of each tubulin monomer) on tubulin correspond to tau binding sites. Further, the Ncd tail domain, like tau, can promote and stabilize MT assembly

under conditions that induce MT disassembly.

Taken together, these results suggest that the Ncd tail functions both in the transport of cargo MTs to spindle poles for the formation of the spindle assembly during meiosis, and in maintenance of spindle assembly during mitosis. How these different functions of Ncd are regulated still remains unknown, however further understanding of the regulation of Ncd function should contribute to our knowledge of cell cycle regulation in both meiotic and mitotic cells.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  ETD.pdf 565.56 Kb 00:02:37 00:01:20 00:01:10 00:00:35 00:00:03

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.