Title page for ETD etd-04162010-144827

Type of Document Dissertation
Author Fetter, Gary
Author's Email Address gmf22@vt.edu
URN etd-04162010-144827
Title Improving Post-Disaster Recovery: Decision Support for Debris Disposal Operations
Degree PhD
Department Business (Management Science)
Advisory Committee
Advisor Name Title
Rakes, Terry R. Committee Chair
Matheson, Lance Arthur Committee Member
Ragsdale, Cliff T. Committee Member
Rees, Loren Paul Committee Member
Zobel, Christopher W. Committee Member
  • emergency management
  • statistical process control
  • facility location
  • disaster debris
  • multiple objective decision making
  • disaster management
Date of Defense 2010-03-31
Availability unrestricted
Disaster debris cleanup operations are commonly organized into two phases. During the first phase, the objective is to clear debris from evacuation and other important pathways to ensure access to the disaster-affected area. Practically, Phase 1 activities largely consist of pushing fallen trees, vehicles, and other debris blocking streets and highways to the curb. These activities begin immediately once the disaster has passed, with the goal of completion usually within 24 to 72 hours. In Phase 2 of debris removal, which is the focus of this study, completion can take months or years. Activities in this phase include organizing and managing curbside debris collection, reduction, recycling, and disposal operations (FEMA 2007).

This dissertation research investigates methods for improving post-disaster debris cleanup operations—one of the most important and costly aspects of the least researched area of disaster operations management (Altay and Green 2006). The first objective is to identify the unique nature of the disaster debris cleanup problem and the important decisions faced by disaster debris coordinators. The second goal is to present three research projects that develop methods for assisting disaster management coordinators with debris cleanup operations. In the first project, which is the topic of Chapter 3, a facility location model is developed for addressing the problem of opening temporary disposal and storage reduction facilities, which are needed to ensure efficient and effective cleanup operations. In the second project, which is the topic of Chapter 4, a multiple objective mixed-integer linear programming model is developed to address the problem of assigning debris cleanup resources across the disaster-affected area at the onset of debris cleanup operations. The third project and the focus of Chapter 5 addresses the problem of equitably controlling ongoing cleanup operations in real-time. A self-balancing CUSUM statistical process control chart is developed to assist disaster management coordinators with equitably allocating cleanup resources as information becomes available in real-time. All of the models in this dissertation are evaluated using data from debris cleanup operations in Chesapeake, Virginia, completed after Hurricane Isabel in 2003.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Fetter_GM_D_2010.pdf 1.98 Mb 00:09:10 00:04:43 00:04:07 00:02:03 00:00:10

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.