Title page for ETD etd-04192006-103718

Type of Document Dissertation
Author Boyer, Renee Raiden
Author's Email Address rraiden@vt.edu
URN etd-04192006-103718
Title Mechanisms Associated with Attachment of Escherichia coli O157:H7 to Lettuce Surfaces
Degree PhD
Department Food Science and Technology
Advisory Committee
Advisor Name Title
Sumner, Susan S. Committee Chair
Kniel, Kalmia E. Committee Member
Pierson, Merle D. Committee Member
Popham, David L. Committee Member
Williams, Robert C. Committee Member
  • curli
  • cell charge
  • hydrophobicity
  • lettuce
  • adhesion
  • Escherichia coli O157:H7
  • attachment
  • O-polysaccaride
  • intimin
Date of Defense 2006-04-07
Availability unrestricted
Fresh produce is increasingly associated with foodborne outbreaks. In order to develop effective intervention and measures to reduce microbial risks, it is essential to attain a better understand the mechanisms of attachment of foodborne pathogens to fruits and vegetables. Using lettuce as a model, the attachment of Escherichia coli O157:H7 to produce surfaces was studied. Strains expressing various extracellular proteins (curli, O157-antigen, and intimin) known to influence attachment of E. coli to intestinal cells were evaluated for their physicochemical properties and ability to adhere to cut edge and whole leaf lettuce. Escherichia coli O157:H7 strains included: 0018, 43894 and 43895 (curli producing and non-producing); 86-24 (WT), F-12 (O157-antigen negative), pRFBE (O-antigen replaced on plasmid); and 86-24, 86-24Äeae10 (intimin negative). The eleven strains were surveyed for their hydrophobicity and cell charge using hydrophobic interaction chromatography (HIC) and electrostatic interaction chromatography (ESIC) techniques. Iceberg lettuce squares (2 x 2 cm) were inoculated with E. coli O157:H7 strains separately (7.0 log CFU/square) and dried in a laminar flow hood. Lettuce was sampled before (unrinsed) and after being rinsed twice with sterile de-ionized water (rinsed). Strips (2 mm wide) of each cut edge of the lettuce were aseptically removed. Cut-edge and whole-leaf samples were homogenized and spiral plated onto Luria-Bertani agar, supplemented with nalidixic acid (50ppm), to assess levels of bacteria remaining on the lettuce leaf after rinsing. The rinse steps were not effective in significantly removing bacteria from lettuce (p>0.05). Curli-producing and non-producing strains preferentially attached to cut edge versus the whole leaf portions of lettuce (p<0.05); however the 86-24 strains showed no preference for attachment. With the exception of 0018 curli-producing and non-producing strains, presence/absence of extracellular proteins surveyed did not influence attachment of E. coli O157:H7 to either cut edge or whole leaf lettuce. There was significantly greater attachment of the curli-producing 0018 strain over the curli non-producing 0018 strain to cut and whole lettuce surfaces (p<0.05). Production of curli and O-polysaccharide significantly increased (p<0.05) the cell’s overall hydrophobicity of the cell; however this did not affect attachment (p<0.05). The overall cell charge of all strains was negative; however, charge did not affect attachment of E. coli O157:H7 to lettuce. The presence of extracellular appendages (curli, O157-antigen, intimin) as well as hydrophobicity and cell charge properties had no affect on attachment of the cell to lettuce.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  RevisedReneeBoyerDissertation4.26.06.pdf 1.19 Mb 00:05:30 00:02:49 00:02:28 00:01:14 00:00:06

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.