Title page for ETD etd-04262005-142920

Type of Document Master's Thesis
Author Thorp, Brian J
Author's Email Address thorp@vt.edu
URN etd-04262005-142920
Title Application Layer Multipoint Extension for the Session Initiation Protocol
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Midkiff, Scott F. Committee Chair
DaSilva, Luiz A. Committee Member
Hou, Yiwei Thomas Committee Member
  • application layer multicast
  • conferencing
  • Session Initiation Protocol
Date of Defense 2005-04-25
Availability restricted
The Session Initiation Protocol (SIP) was first published in 1999, by the Internet Engineering Task Force (IETF), to be the standard for multimedia transfers. SIP is a peer-to-peer signaling protocol that is capable of initiating, modifying, and terminating media sessions. SIP utilizes existing Internet Protocols (IP) such as Domain Name Service (DNS) and the Session Description Protocol (SDP), allowing it to seamlessly integrate into existing IP networks.

As SIP has matured and gained acceptance, its deficiencies when functioning as a multipoint communications protocol have become apparent. SIP currently supports two modes of operation referred to as conferencing and multicasting. Conferencing is the unicast transmission of session information between conference members. Multicasting uses IP multicast to distribute session information. This thesis proposes an extension for the Session Initiation Protocol that improves functionality for multipoint communications.

When using conferencing, a SIP user-agent has limited information about the conference it is taking part in. This extension increases the awareness of a SIP node by providing it with complete conference membership information, the ability to detect neighboring node failures, and the ability to automatically repair conference partitions. Signaling for conferencing was defined and integrated into a standard SIP implementation where it was used to demonstrate the above capabilities. Using a prototype implementation, the additional functionality was shown to come at the cost of a modest increase in transaction message size and processing complexity.

IP multicast has limited deployment in today’s networks reducing the usability of this useful feature. Since IP multicast support is not guaranteed, the use of application layer multicast protocols is proposed to replace the use of IP multicast. An efficient means of negotiating an application layer protocol is proposed as well as the ability to provide the protocol with session information to begin operation. A ring protocol was defined and implemented using the proposed extension. Performance testing revealed that the application layer protocol had slightly higher processing complexity than conferencing, but on average had a smaller transaction message size.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Thesis.pdf 1.67 Mb 00:07:44 00:03:58 00:03:29 00:01:44 00:00:08
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.