Title page for ETD etd-04262006-231952

Type of Document Master's Thesis
Author Minnick, Lisa Marie
Author's Email Address liminnic@vt.edu
URN etd-04262006-231952
Title A Parametric Model for Predicting Submarine Dynamic Stability in Early Stage Design
Degree Master of Science
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Brown, Alan J. Committee Chair
McCue-Weil, Leigh S. Committee Member
Woolsey, Craig A. Committee Member
  • submarine
  • dynamic stability
  • design
Date of Defense 2006-04-21
Availability unrestricted
The goal of this thesis is to develop a dynamic stability and control module that can be used in the concept exploration phase of design. The purpose of the module is to determine the hydrodynamic coefficients/derivatives and stability characteristics of a given design. Two tools, GEORGE and CEBAXI and LA_57, were used to model a submarine, calculate its hydrodynamic coefficients, and determine its stability in the horizontal and vertical plane. GEORGE was developed and used heavily at Naval Coastal Systems Laboratory (NSWCPC) in Panama City, FL and the CEBAXI and LA_57 program was developed partially at University of California State at Long Beach and at the Carderock Division of the Naval Surface Warfare Center (NSWCCD) and is in use at NSWCCD in Bethesda, MD. Both programs require the hull offsets and geometry of the control surfaces as input. The hull offsets were determined by assuming an idealistic teardrop shape and a method for sizing control surfaces was developed by using previous designs to determine sizing trends. ModelCenter software was used to integrate the methods to determine the offsets and control surface geometry with the stability programs. A design of experiments was performed to determine the influence of various input variables on the stability indices and response surface models were created. The response surfaces were implemented into a Total Ship Systems Engineering optimization process used in the senior ship design course at Virginia Tech.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Minnick_Thesis_2.pdf 3.12 Mb 00:14:26 00:07:25 00:06:29 00:03:14 00:00:16

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.