Title page for ETD etd-04282000-15260034

Type of Document Dissertation
Author Dunson, Debra Lynn
Author's Email Address debidsn@aol.com
URN etd-04282000-15260034
Title Synthesis and Characterization of Thermosetting Polyimide Oligomers for Microelectronics Packaging
Degree PhD
Department Chemistry
Advisory Committee
Advisor Name Title
McGrath, James E. Committee Chair
Covington, Edward R. Committee Member
Dillard, John G. Committee Member
Gibson, Harry W. Committee Member
Riffle, Judy S. Committee Member
Shultz, Allan R. Committee Member
  • thermosetting oligomers
  • dielectric films
  • fluorinated polyimides
  • phenylethynyl endcapped polyimides
  • crosslinking
  • polyimides
Date of Defense 2000-04-21
Availability unrestricted
A series of reactive phenylethynyl endcapped imide oligomers has been prepared in either fully cyclized or amic acid precursor form. Soluble oligomers have been synthesized with controlled molecular weights ranging from 2- to 12 Kg/mol. Molecular weight characterization was performed using SEC (size exclusion chromatography) and 13C-NMR, revealing good agreement between the theoretical and experimental (Mn) values. Crosslinked polyimides were obtained by solution or melt processing the oligomers into films and gradually heating in a programmed temperature manner up to the appropriate reaction temperature for the phenylethynyl groups, which is approximately 350-400°C. Thermal analysis of the resulting films showed high glass transition temperatures (>300°C) and excellent thermal stability, comparable to those found for thermoplastic control polyimides. The crosslinked films also had exceptional solvent resistance as evidenced by a high gel fraction (greater than or equal to 95%) following extraction in common solvents for several days. This was in contrast to the amorphous thermoplastic controls, which quickly dissolved upon immersion in solvents.

The monomers used for synthesizing the polyimide oligomers were varied systematically within the series to study the influence of both molecular structure and molecular weight on the physical and film-forming properties. The incorporation of fluorinated monomers, such as 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), reduced water absorption and lowered the dielectric constant relative to non-fluorinated polyimides in the series. When flexible ether linkages were incorporated in the repeat unit by using 4,4'-oxydianiline (ODA), relatively more ductile solvent-cast films were obtained from oligomers having Mn values as low as 10 Kg/mol. Additionally, oligomer Mn and the relative rigidity/symmetry of the repeat unit structure greatly influenced the solubility of polyimides in NMP. For example, even 6FDA/p-phenylenediamine based oligomers with Mn values targeted below 10 Kg/mol precipitated from NMP at 180°C during solution imidization.

The relationship between solution viscosities of polyimide and poly(amic acid) thermosetting oligomers and wetting/spreading ability to form continuous films during spin casting was elucidated. Employing o-dimethoxybenzene (DMB) as a cosolvent with NMP improved the film-forming ability of the fully imidized 6FDA/ODA oligomer series. This was evidenced by a decrease in viscosity (via suppression of physical-type gel formation) and better overall coverage and clarity of the films. Humidity was found to have a detrimental effect, causing the polyimide oligomers to phase separate to form cloudy or porous films. When moisture was reduced, oligomers having Mn greater than or equal to 6 Kg/mol formed spin cast films of <20 micrometer thickness with good qualitative adhesion to several inorganic substrates.

Dielectric constants (epsilon) were estimated for several of the polyimides by measuring the refractive indices (n) of the films and using Maxwell's relationship (epsilon at optical frequencies is equal to n raised to the second power). The apparent dielectric constants were low, ranging from 2.47 to 2.75.

The novel combination of low dielectric constant, solvent resistance and isotropic physical properties inherent in the thermosetting polyimide oligomers makes these materials excellent candidates for use as thin film insulating layers in microelectronics packaging applications.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  debidunson2.pdf 1.17 Mb 00:05:24 00:02:47 00:02:26 00:01:13 00:00:06

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.