Title page for ETD etd-05072010-134046

Type of Document Master's Thesis
Author Lapp, Sarah Julia
Author's Email Address sarahjl3@vt.edu
URN etd-05072010-134046
Title Bioluminescence Imaging Strategies for Tissue Engineering Applications
Degree Master of Science
Department Biomedical Engineering
Advisory Committee
Advisor Name Title
Goldstein, Aaron S. Committee Chair
Morgan, Abby W. Committee Member
Wang, Ge Committee Member
  • flow perfusion
  • bone morphogenetic protein-2
  • bioluminescence imaging
  • bone tissue engineering
Date of Defense 2010-04-26
Availability unrestricted
In vitro differentiation of stem cells in biocompatible scaffolds in a bioreactor is a promising method for creating functional engineered tissue replacements suitable for implantation. Basic studies have shown that mechanical, chemical, and pharmaceutical stimuli enhance biological functionality of the replacement as often defined by parameters such as cell viability, gene expression, and protein accumulation. Most of the assays to evaluate these parameters require damage or destruction of the cell-scaffold construct. Therefore, these methods are not suitable for monitoring the development of a functional tissue replacement in a spatial and temporal manner prior to implantation. Bioluminescence imaging is a technique that has been utilized to monitor cell viability and gene expression in various in vivo applications. However, it has never been applied in an in vitro setting for the specific purpose of evaluating a cell-scaffold construct.

This research describes the design of flow perfusion bioreactor system suitable for bioluminescence imaging. In the first experimental chapter, the system was tested using MC3T3-E1 cells transfected with a constitutive bioluminescent reporter. It was found that bioluminescence imaging was possible with this system. In the second experimental chapter, MC3T3-E1 cells transfected with BMP-2 linked bioluminescence reporter were cultured by flow perfusion for a period of 11 days. Bioluminescence was detectable from the cells starting at day 4, while peaking in intensity between days 7 and 9. Further, it was also found that bioluminescence occurred in distinct regions within the scaffold. These results indicate that these strategies may yield information not available with current assays.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Lapp_SJ_T_2010.pdf 1.74 Mb 00:08:03 00:04:08 00:03:37 00:01:48 00:00:09

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.