Title page for ETD etd-05122004-105746


Type of Document Master's Thesis
Author Ranson, William Wayne
Author's Email Address wranson@vt.edu
URN etd-05122004-105746
Title Adiabatic Effectiveness Measurements of Leakage Flows along the Hub Region of Gas Turbine Engines
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Thole, Karen A. Committee Chair
O'Brien, Walter F. Jr. Committee Member
Vick, Brian L. Committee Member
Keywords
  • endwall
  • adiabatic effectiveness
  • leakage flows
  • microcircuit
  • gas turbine
  • featherseal
Date of Defense 2004-05-11
Availability unrestricted
Abstract
To prevent melting of turbine blades, numerous cooling schemes have been developed to cool the blades using cooler air from the compressor. Unfortunately, the clearance gap between adjacent hub sections allows coolant to leak into the hub region. Coolant flow also leaks into the hub region through gaps between individual stages. The results of a combined experimental and computational study of cooling along the hub of a first stage turbine blade caused by leakage flows are discussed in detail. Additionally, this study examines a novel cooling feature, called a microcircuit, which combines internal convective cooling with external film cooling.

For the experimental investigation, scaled up blades were tested in a low speed wind tunnel. Adiabatic effectiveness measurements were made with infrared thermography of the entire hub region for a range of leakage flow conditions. For the computations, a commercially available computational fluid dynamics (CFD) code, FLUENT 6.0, was used to simulate the various flows.

Results show that featherseal leakage flows provide small cooling benefits to the hub. Increases in featherseal flow provide no additional cooling to the hub region. Unlike the featherseal, leakage flows from the front rim provide ample cooling to the hub region, especially the leading edge of the blade passage. None of the leakage flows provide significant cooling to the pressure side region of the hub or trailing edge suction side. With the addition of the hub microcircuits, there is improved hub cooling of the suction side of the blades. Though the coolant exit uniformity was low and affected by the featherseal flow, the microcircuits were shown to provide more cooling along the hub region. Good agreements were observed between the computational and experimental results, though computations over-predicted front rim cooling and microcircuit uniformity.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  WholeThesis.pdf 7.59 Mb 00:35:09 00:18:04 00:15:49 00:07:54 00:00:40

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.