TRANS
A STUDY OF MOTION AND GEOMETRY
ALIREZA BORHANI HAGHIGHI

This thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of
Master of Architecture in Architecture

Robert J. Dunay, Chair
Steve R. Thompson
William U. Galloway
Robert P. Schubert

April 16, 2012
Blacksburg, VA

Keywords: Geometry, Motion, Kinetic

Copyright Alireza Borhani Haghighi
INTRODUCTION

Geometry is beautiful for its own sake, and it is sometimes complex. When it moves, geometry is more beautiful and more elaborate. Geometry lies at the beginnings of architecture. I have spent a great part of my life in Iran, where the visible and invisible integration of geometry into arts, crafts, and architecture is very much the norm. In Persian literature, the root of the word “engineer” (in Persian: “Mohandes”), is “geometry” (in Persian: “Hendese”). “Mohandes” (engineer) means “one who measures and knows geometry” and is “one who designs and creates spaces based on geometry and measurement”. Although in Iranian architecture, geometry does not involve physical movement, complex geometric designs and repeating patterns create the impression of motion in static spaces and demonstrate the dynamic and vivid qualities of space.

Architecture is the creation of space for people to move in, but movement has not been the main concern of buildings. Traditionally, there are quite a few elements in architecture that move, such as doors and windows. In fact, the architect’s task is to erect a building on apparently stable ground that is durable and permanent.

This book is concerned with motion and geometry. In this study, design is the research tool to integrate geometry, force and movement. Through hand sketches, computer modeling and prototyping, I examined geometric elements that are movable in terms of their purpose, composition, form and meaning. The goal is to examine movements that, on the one hand, help make our buildings more useful and, on the other hand, contribute toward richer experiences.

Assume a horizontal or vertical surface (around 6’X6’) is located in front of a light source. The surface consists of a primary structure that holds some non-structural modular elements. These elements can change their positions relative to each other or in relation to the main structure. Intentionally, this surface does not have a name or particular function yet. These designs are part of a brainstorming investigation, where the aim is to study the different mechanisms and geometric compositions. These designs are organized in a design relationship diagram (page 2) that demonstrates the relation between different models.

A study of motion and geometry can be organized in two categories:

The first category consists of designs where movable elements can perform individually and their movements are not related to each other. This means they can independently be in a closed, open or in-between state. Therefore, this category performs a maximum variety of geometrical compositions. In this category, each element is considered as an individual piece that can perform or be replaced separately without causing disorder in the whole system. In combination, they are not conceived as geometric pattern.

The second category consists of designs that are derived directly from geometry, not only in their elements, but also in the whole system. Unlike the first category, there is an apparent geometrical pattern as a fundamental formation. In this category, each element is not an independent piece but is part of an integrated system. This interdependency of the whole system decreases the variety of potential geometric compositions but increases the sense of unity. The fact that each element is not able to move autonomously, there are different challenges related to the performance and aesthetic aspects will arise.

This study is an overture to profound research on “geometry and motion in architecture” that would be eagerly pursued by the author. This research is an opening to the topic of how geometry and movement would add value to design.

1. The word “hendesah” has derived from Persian “andazeh (andakhtan)”, which has a similar meaning to “metre”, principally “to put” and subsequently “to measure”. “Mohandes” is a subject-name for the infinitive “hendesah”.
2. In future, this study may be used in design of facades, sun shading devices or interior partitions.
TABLE OF CONTENTS

Abstract ... 01
Introduction .. 01
Design Relationship Diagram 02
A Journey from Static Geometry to Dynamic Geometry 03
ANGULUS ... 04
UMBRA I ... 05
UMBRA II ... 06
UMBRA III .. 07
UMBRA IV ... 09
AURA I ... 10
AURA II ... 11
AURA III .. 12
AURA IV .. 14
AURA V ... 15
SOL I ... 16
SOL II ... 18
OCULUS I .. 20
OCULUS II ... 22
OCULUS III .. 23
OCULUS IV .. 24
OCULUS V ... 25
TEXTA II ... 26
TEXTA III ... 26

IMAGE CREDITS: All images are by the author
INTRODUCTION

Geometry is beautiful for its own sake, and it is sometimes complex. When it moves, geometry is more beautiful and more elaborate. Geometry lies at the beginnings of architecture. I have spent a great part of my life in Iran, where the visible and invisible integration of geometry into arts, crafts, and architecture is very much the norm. In Persian literature, the root of the word "engineer" (in Persian: "Mohandes"), is "geometry" (in Persian: "Hendese"). "Mohandes" (engineer) means "one who measures and knows geometry" and is "one who designs and creates spaces based on geometry and measurement". Although in Iranian architecture, geometry does not involve physical movement, complex geometric designs and repeating patterns create the impression of motion in static spaces and demonstrate the dynamic and vivid qualities of space.

Architecture is the creation of space for people to move in, but movement has not been the main concern of buildings. Traditionally, there are quite a few elements in architecture that move, such as doors and windows. In fact, the architect's task is to erect a building on apparently stable ground that is durable and permanent. This book is concerned with motion and geometry. In this study, design is the research tool to integrate geometry, force and movement. Through hand sketches, computer modeling and prototyping, I examined geometric elements that are movable in terms of their purpose, composition, form and meaning. The goal is to examine movements that, on the one hand, help make our buildings more useful and, on the other hand, contribute toward richer experiences.

This study is an overture to profound research on "geometry and motion in architecture" that would be eagerly pursued by the author. This research is an opening to the topic of how geometry and movement would add value to design.

1. The word "hendesah" has derived from Persian "andakhtan" which has a similar meaning to "metre". Therefore, "Mohandes" is a subject-name for the infinitive "hendesah".
2. In future, this study may be used in design of facades, sun shading devices or interior partitions.
TABLE OF CONTENTS

Abstract ...01
The Introduction ...02
Design Relationship Diagram ...02
A Journey from Static Geometry to Dynamic Geometry03
Model 1: ANGULUS ..04
Model 2: UMBRA I ..05
Model 3: UMBRA II ..06
Model 4: UMBRA III ...07
Model 5: UMBRA IV ...09
Model 6: AURA I ...10
Model 7: AURA II ...11
Model 8: AURA III ...12
Model 9: AURA IV ..14
Model 10: AURA V ..15
Model 11: SOL I ...16
Model 12: SOL II ..18
Model 13: OCLUDUS I ..20
Model 14: OCLUDUS II ..21
Model 15: OCLUDUS III ...23
Model 16: OCLUDUS IV ...24
Model 17: OCLUDUS V ...25
Model 16: TEXTA II ..26
Model 16: TEXTA III ..28

IMAGE CREDITS: All images are by the author
A JOURNEY FROM STATIC GEOMETRY TO DYNAMIC GEOMETRY

MODEL NAME: TEXTA I
DIMENSION: 20" x 20"
TYPOLOGY OF MOVEMENT: -

MODEL NAME: TEXTA II
DIMENSION: 20" x 20"
TYPOLOGY OF MOVEMENT: TRANSLATION

MODEL NAME: LUMIRA IV
DIMENSION: 12.5" x 12.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: ANGULUS
DIMENSION: 6" x 6"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: AURA 1
DIMENSION: 13" x 13"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: AURA V
DIMENSION: 11.5" x 11.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: UMBRA I
DIMENSION: 6" x 6"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: UMBRA II
DIMENSION: 13" x 13"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: UMBRA III
DIMENSION: 17.5" x 17.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: UMBRA II
DIMENSION: 13" x 13"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: UMBRA III
DIMENSION: 17.5" x 17.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: UMBRA III
DIMENSION: 17.5" x 17.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: UMBRA IV
DIMENSION: 12.5" x 12.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: UMBRA III
DIMENSION: 17.5" x 17.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: UMBRA IV
DIMENSION: 12.5" x 12.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME : ANGULUS
DIMENSION: 6" x 6"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME : AURA I
DIMENSION: 13" x 13"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: AURA III
DIMENSIONS: 23" x 23"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: AURA IV
DIMENSIONS: 11.5" x 11.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: AURA II
DIMENSION: 23" x 23"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: AURA III
DIMENSION: 23" x 23"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: AURA III
DIMENSIONS: 23" x 23"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION

MODEL NAME: AURA IV
DIMENSIONS: 11.5" x 11.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: SOL I
DIMENSION: 12.5" x 12.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: SOL I
DIMENSION: 12.5” x 12.5”
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: SOL II
DIMENSION: 19” x 19”
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: SOL II
DIMENSION: 19” x 19”
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: OCULUS 1
DIMENSIONS: 9" x 9"
TYPOLOGY OF MOVEMENT: ROTATION
MODEL NAME: OCULUS I
DIMENSION: 9" x 9"
TYPOLOGY OF MOVEMENT: ROTATION
Model Name: Oculus II
Dimension: 23.5" x 23.5"
Typology of Movement: Rotation

Model Name: Oculus III
Dimension: 23.5" x 23.5"
Typology of Movement: Rotation and Translation
MODEL NAME: OCULUS II
DIMENSION: 23.5" x 23.5"
TYPOLOGY OF MOVEMENT: ROTATION

MODEL NAME: OCULUS III
DIMENSION: 23.5" x 23.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: OCULUS V
DIMENSION: 23.5" x 23.5"
TYPOLOGY OF MOVEMENT: ROTATION

MODEL NAME: OCULUS IV
DIMENSION: 9" x 23.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: TEXTA II
DIMENSION: 25.2" x 17.5"
TYPOLOGY OF MOVEMENT: TRANSLATION

MODEL NAME: TEXTA III
DIMENSION: 25" x 25"
TYPOLOGY OF MOVEMENT: TRANSLATION
A JOURNEY FROM STATIC GEOMETRY TO DYNAMIC GEOMETRY

MODEL NAME: TEXTA I
DIMENSION: 25.5" x 17.5"
TYPOLOGY OF MOVEMENT: -

MODEL NAME: TEXTA II
DIMENSION: 20" x 20"
TYPOLOGY OF MOVEMENT: TRANSLATION

MODEL NAME: UMBRA IV
DIMENSION: 12.5" x 12.5"
TYPOLOGY OF MOVEMENT: ROTATION AND TRANSLATION
MODEL NAME: TEXTA II
DIMENSION: 25.5" x 17.5"
TYPOLOGY OF MOVEMENT: TRANSLATION