Title page for ETD etd-05142004-171134

Type of Document Master's Thesis
Author Bayram, Ahmet
Author's Email Address abayram@vt.edu
URN etd-05142004-171134
Title A Study of Indoor Ultra-wideband Propagation Measurement and Characterization
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Safaai-Jazi, Ahmad Committee Chair
Davis, William A. Committee Member
Riad, Sedki Mohamed Committee Member
Woerner, Brian D. Committee Member
  • signal distortion
  • UWB antennas
  • frequency-domain measurement technique
  • path loss
  • indoor propagation
Date of Defense 2004-05-13
Availability unrestricted
Ultra-wideband (UWB) communication is emerging as a new wireless technology, which promises high data rates with low interference and low power consumption. The development of such UWB systems requires a sufficiently large amount of data to characterize the propagation behavior of UWB signals in indoor environments and develop accurate channel models. This thesis focuses primarily on a frequency-domain approach for propagation measurements and characterization of indoor UWB channels. This approach is based on measurements of the amplitude using a scalar network analyzer and retrieval of the phase from the amplitude data using a Hilbert transform relationship.

Extensive propagation data are collected in a frequency range of 1 to 12 GHz in two buildings on Virginia Tech campus. Using the data, channel characterization results are obtained and compared to those based on time-domain measurements. Some statistical results for small-scale fading, path loss exponent, and signal quality are presented. This comparison validates the accuracy of measured results for the UWB measurement campaign. The measured data also reaffirms the immunity of UWB propagation to small-scale fading which is present in narrowband wireless communication systems.

In addition to channel propagation measurements, signal distortions in UWB links, due to bandwidth limitations of antenna characteristics as well as the dispersive behavior of building materials, are also examined. In particular, the distortion of radiated signals by TEM horn antennas along off-boresight directions are studied experimentally. Furthermore, pulse distortions resulting from propagation through dispersive walls are demonstrated by simulation. The roles of receive-transmit antennas in a UWB link are examined, and the requirements for gain, input impedance, polarization, and phase of the radiated signal necessary for minimization of signal distortions are pointed out.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  etd.pdf 5.05 Mb 00:23:21 00:12:00 00:10:30 00:05:15 00:00:26

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.