Title page for ETD etd-05192010-094755

Type of Document Master's Thesis
Author Kwong, Gordon Houng
Author's Email Address ghkwong@vt.edu
URN etd-05192010-094755
Title Approximations for Nonlinear Differential Algebraic Equations to Increase Real-time Simulation Efficiency
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Southward, Steve C. Committee Chair
Ahmadian, Mehdi Committee Member
Taheri, Saied Committee Member
  • Suspension Modeling
  • Real Time Modeling
  • Driving Simulator
Date of Defense 2010-05-05
Availability restricted
Full-motion driving simulators require efficient real-time high fidelity vehicle models in order to provide a more realistic vehicle response. Typically, multi-body models are used to represent the vehicle dynamics, but these have the unfortunate drawback of requiring the solution of a set of coupled differential algebraic equations (DAE). DAE's are not conducive to real-time implementation such as in a driving simulator, without a very expensive processing capability. The primary objective of this thesis is to show that multi-body models constructed from DAE's can be reasonably approximated with linear models using suspension elements that have nonlinear constitutive relationships.

Three models were compared in this research, an experimental quarter-car test rig, a multi-body dynamics differential algebraic equation model, and a linear model with nonlinear suspension elements. Models constructed from differential algebraic equations are computationally expensive to compute and are difficult to realize for real-time simulations. Instead, a linear model with nonlinear elements was proposed for a more computationally efficient solution that would retain the nonlinearities of the suspension. Simplifications were made to the linear model with nonlinear elements to further reduce computation time for real-time simulation.

The development process of each model is fully described in this thesis. Each model was excited with the same input and their outputs were compared. It was found that the linear model with nonlinear elements provides a reasonably good approximation of actual model with the differential algebraic equations.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Kwong_GH_T_2010.pdf 1.34 Mb 00:06:13 00:03:11 00:02:47 00:01:23 00:00:07
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.