Title page for ETD etd-06042012-155100

Type of Document Master's Thesis
Author Singh, Raymond Charan
Author's Email Address rcsingh4@vt.edu
URN etd-06042012-155100
Title Modeling Energy Harvesting From Membrane Vibrations using Multi-physics Modeling
Degree Master of Science
Department Aerospace Engineering
Advisory Committee
Advisor Name Title
Kapania, Rabesh K. Committee Chair
Sultan, Cornel Committee Co-Chair
Philen, Michael K. Committee Member
  • Piezoelectric
  • Energy Harvesting
  • Computational Methods
  • Membranes
Date of Defense 2012-04-30
Availability unrestricted
Given the ever-growing need for device autonomy and renewable sources of energy, energy harvesting has become an increasingly popular field of research. This research focuses on energy harvesting using the piezoelectric effect, from vibrating membrane structures by converting mechanical energy into electric energy. Specific applications of this research include powering components of bio-inspired micro air vehicles (MAVs), which require long range with as little regular maintenance as possible, and powering sensors for structural health monitoring on otherwise inaccessible locations (the roof of the Denver Int’l Airport is a good example). Coming up with an efficient, high-fidelity model of these systems allows for design optimization without the extensive use of experimental testing, as well as a deeper understanding of the physics involved. These are the twin goals of this research. This work describes a modeling algorithm using COMSOL, a multi-physics software, to predict the structural mechanics of and subsequent power harvested from a piezoelectric patch placed on a prestressed membrane structure. The model is verified by an FE comparison of the modeled system's dynamic response. For a 0.5 x 0.5 x 0.001 m nylon membrane with a 0.1 x 0.1 x 0.001 m piezoelectric patch placed on its corner, a maximum power output of ~10 microwatts was achieved, using a resistance of 100 Ohms and exciting the system around resonance. When the patch was placed on the side of the membrane, the power output was ~100 milliwatts. The ultimate goal is to estimate the energy harvested by a network of these piezoelectric patches and optimize the harvesting system based on the size, shape and location of the patches.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Singh_RC_T_2012.pdf 1.86 Mb 00:08:35 00:04:25 00:03:52 00:01:56 00:00:09

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.