Title page for ETD etd-06062008-162137

Type of Document Dissertation
Author Fallon, J. Barry
URN etd-06062008-162137
Title Improving the kinematic control of robots with computer vision
Degree PhD
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Reinholtz, Charles F. Committee Chair
Abbott, A. Lynn Committee Member
Deisenroth, Michael P. Committee Member
Dhande, Sanjay G. Committee Member
Watson, Layne T. Committee Member
  • pose
  • robotics
  • tracking
Date of Defense 1995-07-05
Availability restricted

This dissertation describes the development and application of a computer vision system for improving the performance of robots. The vision-based approach determines position and orientation (pose) parameters more directly than conventional approaches that are based on kinematics and joint feedback. Traditional robot control systems rely on kinematic models, measured joint variables, knowledge of objects in the workspace, and the calibrated robot base pose to correctly position and orient a tool. Since this conventional approach involves a large number of parameters, unacceptable pose errors may accumulate. In contrast, the vision system approach uses images from a tool-mounted camera and geometric knowledge of objects in the workspace to accurately track and determine the end-effector pose. This approach is advantageous because the camera directly observes the parameters of interest (position and orientation of the robot tool with respect to the work-piece) during the positioning process.

The vision approach is verified and its utility demonstrated by increasing the automation and accuracy of computer controlled robots used in the nuclear service industry. The overall solution strategy involves tracking and pose determination. Tracking is used as a coarse positioner and to verify the toolhead position prior to performing crucial servicing operations. Pose determination is used to calibrate the base location of the robot, verify the tool pose for insertions, and compute a precise correction if necessary.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V856_1995.F355.pdf 114.84 Mb 08:51:39 04:33:25 03:59:14 01:59:37 00:10:12
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.