Title page for ETD etd-06172005-112003

Type of Document Master's Thesis
Author Quicho, Joemel Mariano
URN etd-06172005-112003
Title Efficacy of Ultraviolet Light in Combination with Chemical Preservatives for the Reduction of Escherichia coli in Apple Cider
Degree Master of Science
Department Food Science and Technology
Advisory Committee
Advisor Name Title
Williams, Robert C. Committee Chair
Marcy, Joseph E. Committee Member
Sumner, Susan S. Committee Member
  • Ultraviolet
  • Preservatives
  • Hydrogen Peroxide
  • Potassium Sorbate
  • Dimethyl Dicarbonate
  • Sodium Benzoate
  • Escherichia coli
  • Apple Cider
Date of Defense 2005-06-03
Availability unrestricted
Hazard Analysis Critical Control Point (HACCP) regulations for juice manufacture require the application of a process that will result in a 5-log reduction (99.999%) of the pertinent pathogen in the juice being processed. The use of ultraviolet (UV) light, as an alternative to traditional thermal processing, has been adopted by some juice processors as a means of meeting the HACCP 5-log performance standard. However, little research had been performed to determine the effect of UV when used in combination with antimicrobial agents that are commonly added to juice products. Therefore, the objectives of this work were (1) to determine if chemical preservatives and ultraviolet light have a combined effect on the reduction of Escherichia coli in apple cider, and (2) to determine the influence of adding chemical preservatives at different points in the processing of juice (i.e., either prior to or after ultraviolet light processing) on the reduction of Escherichia coli in apple cider. In this study, refrigerated (4°C) pasteurized apple cider that contained no added preservatives was inoculated with E. coli ATCC 25922, a surrogate strain for E. coli O157:H7, and exposed to UV (peak output: 254 nm). The following chemical preservatives were added to apple cider either prior to or after UV exposure: dimethyl dicarbonate (75 and 150 ppm), hydrogen peroxide (75 and 150 ppm), potassium sorbate (1000 and 2000 ppm), and sodium benzoate (1000 and 2000 ppm). Following UV exposure and chemical preservative application, inoculated juices were stored at 4°C for 72 hours. Samples were collected prior to and immediately after UV exposure and at 24, 48, and 72 hours of storage. At each sampling point, juice portions (0.1 ml) were serially diluted in peptone diluent (0.1%) and surface plated onto Tryptic Soy Agar (TSA). Counts of the bacterial colonies were made 48 hours after incubating plates at 35°C. Overall, reductions of E. coli were greater in cider treated with preservatives after UV processing than when preservatives were added prior to UV processing (P < 0.05). Furthermore, dimethyl dicarbonate and hydrogen peroxide were more effective than potassium sorbate and sodium benzoate in reducing E. coli populations in conjunction with UV (P < 0.05). When added prior to UV exposure, potassium sorbate was the least effective, allowing for the greatest survival (P < 0.05). This study describes the use of UV in conjunction with hydrogen peroxide and dimethyl dicarbonate as an effective method for producing a 5-log or greater reduction of E. coli O157:H7 in apple cider.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  QuichoJThesis.pdf 251.31 Kb 00:01:09 00:00:35 00:00:31 00:00:15 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.