Title page for ETD etd-06232003-172030

Type of Document Master's Thesis
Author Ebeling, Christopher P.
Author's Email Address cebeling@vt.edu
URN etd-06232003-172030
Title Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Thole, Karen A. Committee Chair
Tafti, Danesh K. Committee Member
Vick, Brian L. Committee Member
  • Compact heat exchanger
  • Louvered fins
  • Tube wall
Date of Defense 2003-06-13
Availability unrestricted
Compact heat exchangers are usually characterized by a large heat transfer surface per unit of volume. These characteristics are useful when thermal energy between two or more fluids must be exchanged without mixing. Most compact heat exchangers are liquid-to-air heat exchangers, with approximately 85% of the total thermal resistance occurring on the air side of the heat exchanger. To reduce the space and weight of a compact heat exchanger, augmentation strategies must be proposed to reduce the air side resistance. However, before any strategies to augment the air side heat transfer can be proposed, a thorough insight of the current mechanisms that govern air side heat transfer is required.

The tube wall heat transfer results presented in this paper were obtained both experimentally and computationally for a typical compact heat exchanger design. Both isothermal and constant heat flux tube walls were studied. For the experimental investigation, a scaled-up model of the louvered fin-tube wall was tested in a flow facility. Although computational results for the isothermal tube wall are shown, control of the experimental isothermal tube wall proved to be unrealistic and only heat transfer measurements along the constant heat flux tube wall were made. For the constant heat flux tube wall, reasonable agreement has been achieved between the measurements and the steady, three-dimensional computational predictions.

The results of the study showed that high heat transfer coefficients existed at the entrance to the louver array as well as in the louver reversal region. Vortices created at the leading edge of the louvers augmented heat transfer by thinning the tube wall boundary layer. Results indicate that an augmentation ratio of up to 3 times can occur for a tube wall of a louvered fin compact heat exchanger as compared to a flat plate.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Ebeling_thesis2.pdf 2.23 Mb 00:10:18 00:05:18 00:04:38 00:02:19 00:00:11

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.