Title page for ETD etd-07152005-094536

Type of Document Dissertation
Author Tsai, Shu-Jen Steven
Author's Email Address stsai@vt.edu
URN etd-07152005-094536
Title Study of Global Power System Frequency Behavior Based on Simulations and FNET Measurements
Degree PhD
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Liu, Yilu Committee Chair
Centeno, Virgilio A. Committee Member
De La Ree Lopez, Jaime Committee Member
Lin, Tao Committee Member
Mishra, Amitabh Committee Member
  • visualization
  • FNET
  • wavelet denoise
  • Power system frequency dynamics
  • wide area measurement system
  • electromechanical wave propagation
Date of Defense 2005-07-14
Availability unrestricted
A global view of power system's frequency opens up a new window to the "world" of large system's dynamics. With the aid of global positioning system (GPS), measurements from different locations can be time-synchronized; therefore, a system-wide observation and analysis would be possible. As part of the U.S. nation-wide power frequency monitoring network project (FNET), the first part of the study focuses on utilizing system simulation as a tool to assess the frequency measurement accuracy needed to observe frequency oscillations from events such as remote generation drops in three U.S. power systems. Electromechanical wave propagation phenomena during system disturbances, such as generation trip, load rejection and line opening, have been observed and discussed. Further uniform system models are developed to investigate the detailed behaviors of wave propagation. Visualization tool is developed to help to view frequency behavior simulations. Frequency replay from simulation data provides some insights of how these frequency electromechanical waves propagate when major events occur. The speeds of electromechanical wave propagation in different areas of the U.S. systems, as well as the uniform models were estimated and their characteristics were discussed. Theoretical derivation between the generator's mechanical powers and bus frequencies is provided and the delayed frequency response is illustrated.

Field-measured frequency data from FNET are also examined. Outlier removal and wavelet-based denoising signal processing techniques are applied to filter out spikes and noises from measured frequency data. System's frequency statistics of three major U.S. power grids are investigated. Comparison between the data from phasor measurement unit (PMU) at a high voltage substation and from FNET taken from 110 V outlets at distribution level illustrates the close tracking between the two. Several generator trip events in the Eastern Interconnection System and the Western Electricity Coordinating Council system are recorded and the frequency patterns are analyzed. Our trigger program can detect noticeable frequency drop or rise and sample results are shown in a 13 month period. In addition to transient states' observation, the quasi-steady-state, such as oscillations, can also be observed by FNET. Several potential applications of FNET in the areas of monitoring & analysis, system control, model validation, and others are discussed. Some applications of FNET are still beyond our imagination.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  ETD.pdf 15.90 Mb 01:13:36 00:37:51 00:33:07 00:16:33 00:01:24

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.