Novel Preparation of Porous Alumina using Ice Particles as Pore-Forming Agents

By

Samantha G. Smith

Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science

in

Materials Science and Engineering

Gary Pickrell (chair)
Alex Aning
Carlos Suchicital

July 15, 2011
Blacksburg, Virginia

Keywords: porous ceramics, pore-forming agent, slip casting, ice

Copyright 2011, Samantha Smith
INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightlink account and that are available at any time at http://www.elsevier.com)

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in

\begin{tabular}{|c|c|c|}
\hline
Number of & 3 & \hline
figures/tables & illustrations &
\hline
Format & both print and electronic &
\hline
\end{tabular}

Elsevier Limited

This is a License Agreement between Samantha Smith ("You") and Elsevier ("Elsevier") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

Supplier

Elsevier Limited

The Boulevard, Langford Lane

Kidlington, Oxford, OX5 1GB, UK

Registered Company Number

1982041

Customer name

Samantha Smith

Customer address

311 Hunt Club Rd.

Blackburg, VA 24060

License number

2687201311589

License date

13/11/2013

Licensed content publisher

Elsevier

Licensed content title

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Licensor content title

Effects of microstructural investigation of metal powder compacts during sintering

Licensor content author

Oliver Lueke, Daniel Bierle, Marco Di Michel, Didier Bernard

Licensor content date

January 2003

Licensor content volume

200

Licensor content issue number

Number of pages

8

Start Page

1

End Page

287
International Union of Pure Applied Chemistry

From IUPAC website http://www.iupac.org/publications/pac/

IUPAC makes freely available the full texts of all articles published in Pure and Applied Chemistry on the IUPAC Web site, for all except the current and most recently completed volumes. In addition, authors may immediately deposit copies of their own articles online, for archival and distribution purposes, but only in the form of the IUPAC published pdf version. IUPAC Technical Reports and Recommendations are freely accessible from date of publication.

Use of material such as figures and tables from articles published in Pure and Applied Chemistry is permitted so long as the source of the material is properly cited. If formal permission is required, please send a request to <pac@iupac.org>.