Title page for ETD etd-08142006-110109

Type of Document Dissertation
Author Karamikhova, Rossitza
URN etd-08142006-110109
Title A finite element analysis of high kappa, high field Ginzburg-Landau type model of superconductivity
Degree PhD
Department Mathematics
Advisory Committee
Advisor Name Title
Peterson, Janet S. Committee Chair
Burns, John A. Committee Member
Gunzburger, Max D. Committee Member
Herdman, Terry L. Committee Member
Lin, Tao Committee Member
  • Ginzburg-Landau type model
  • superconductivity
Date of Defense 1995-08-05
Availability restricted
This work is concerned with the formulation and analysis of a simplified GinzburgLandau type model of superconductivity which is valid for large K and large magnetic field strengths. This model, referred to as the High kappa model, is derived via formal asymptotic expansion of the full, time-dependent Ginzburg-Landau equations. The model accounts for the effects of both applied magnetic fields and currents of constant magnitude. A notable feature of our model is that the systems for the leading order terms for the magnetic potential and the order parameter are decoupled.

Finite element approximations of the High kappa model are introduced using standard Galerkin discretization in space and Backward-Euler and Crank-Nicolson discretization schemes in time. We establish existence and uniqueness results for the fully-discrete equations as well as optimal L2 and HI error estimates for the Backward-Euler-Galerkin and the Crank-Nicolson-Galerkin problems.

Computational experiments are performed with several combinations of spatial and time discretizations of the High kappa model equations. Among other things our numerical approximations show good agreement for rates of convergence in space and time with the corresponding theoretical values. Finally, some well known steady-state and dynamic phenomena valid for type II superconductors are illustrated numerically.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V856_1995.K373.pdf 4.91 Mb 00:22:45 00:11:42 00:10:14 00:05:07 00:00:26
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.