Title page for ETD etd-08152012-043900

Type of Document Dissertation
Author Aboelkassem, Yasser
Author's Email Address yasser@vt.edu
URN etd-08152012-043900
Title Novel Bioinspired Pumping Models for Microscale Flow Transport
Degree PhD
Department Engineering Science and Mechanics
Advisory Committee
Advisor Name Title
Staples, Anne E. Committee Chair
Davalos, Rafael V. Committee Member
De Vita, Raffaella Committee Member
Jung, Sunghwan Committee Member
Socha, John J. Committee Member
Stremler, Mark A. Committee Member
  • Bioinspiration
  • Biomimetics
  • Physiological System in Insects
  • Stokeslets
  • Meshfree
  • Microscale Flow Transport
  • Collapsible Tubes
  • Microfluidics
Date of Defense 2012-08-01
Availability unrestricted
Bioinspiration and biomimetics are two increasingly important fields in applied science and mechanics that seek to imitate systems or processes in nature to design improved engineering devices. Here, we are inspired and motivated by microscale internal flow transport phenomena in insect tracheal networks, which are observed to be induced by the rhythmic tracheal wall contractions. These networks have been shown to mange fluid very efficiently compared to current state-of-the-art microfluidic devises.

This dissertation presents two versions of a novel bioinspired pumping mechanism that is neither peristaltic nor belongs to impedance mismatch class of pumping mechanisms. The insect-inspired pumping models presented here are expected to function efficiently in the microscale flow regime in a simple channel/tube geometries or a complex network of channels. The first pumping approach shows the ability of inducing a unidirectional net flow by using an inelastic tube or channel with at least two moving contractions. The second pumping approach presents a new concept for directional pumping, namely ``selective pumping in a network.". The results presented here might help in mimicking features of physiological systems in insects and guide efforts to fabricate novel microfluidic devices with improved efficiency.

In this study, both theoretical analysis and Stokeslets-meshfree computational methods are used to solve for the 2D and 3D viscous flow transport in several micro-geometries (tubes, channels and networks) with prescribed moving wall contractions. The derived theoretical analysis is based on both lubrication theory and quasi-steady approximations at low Reynolds numbers. The meshfree numerical method is based on the method of fundamental solutions (MFS) that uses a set of singularized force elements ``Stokeslets'' to induce the flow motions. Moreover, the passive particle tracking simulation approach in the Lagrangian frame of reference is also used to strengthen and support our pumping paradigm developed in this dissertation.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Aboelkassem_Y_D_2012.pdf 43.19 Mb 03:19:57 01:42:50 01:29:58 00:44:59 00:03:50
  Aboelkassem_Y_D_2012_permissions.pdf 185.30 Kb 00:00:51 00:00:26 00:00:23 00:00:11 < 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.