Title page for ETD etd-08172006-190720

Type of Document Master's Thesis
Author Vlachakis, Vasileios N
Author's Email Address vvlachak@vt.edu
URN etd-08172006-190720
Title Turbulent Characteristics in Stirring Vessels: A Numerical Investigation
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Vlachos, Pavlos P. Committee Chair
  • Rushton turbine
  • Stirring Vessel
  • Turbulence
  • CFD
  • DPIV
Date of Defense 2006-06-16
Availability unrestricted
Understanding the flow in stirred vessels can be useful for a wide number of industrial applications, like in mining, chemical and pharmaceutical processes. Remodeling and redesigning these processes may have a significant impact on the overall design characteristics, affecting directly product quality and maintenance costs. In most cases the flow around the rotating impeller blades interacting with stationary baffles can cause rapid changes of the flow characteristics, which lead to high levels of turbulence and higher shear rates. The flow is anisotropic and inhomogeneous over the entire volume. A better understanding and a detailed documentation of the turbulent flow field is needed in order to design stirred tanks that can meet the required operation conditions. This thesis describes efforts for accurate estimation of the velocity distribution and the turbulent characteristics (vorticity, turbulent kinetic energy, dissipation rate) in a cylindrical vessel agitated by a Rushton turbine (a disk with six flat blades) and in a tank typical of flotation cells.

Results from simulations using FLUENT (a commercial CFD package) are compared with Time Resolved Digital Particle Image Velocimetry (DPIV) for baseline configurations in order to validate and verify the fidelity of the computations. Different turbulence models are used in this study in order to determine the most appropriate for the prediction of turbulent properties. Subsequently a parametric analysis of the flow characteristics as a function of the clearance height of the impeller from the vessel floor is performed for the Rushton tank as well as the flotation cell. Results are presented for both configurations along planes normal or parallel to the impeller axis, displaying velocity vector fields and contour plots of vorticity turbulent dissipation and others. Special attention is focused in the neighborhood of the impeller region and the radial jet generated there. This flow in this neighborhood involves even larger gradients and dissipation levels in tanks equipped with stators. The present results present useful information for the design of the stirring tanks and flotation cells, and provide some guidance on the use of the present tool in generating numerical solutions for such complex flow fields.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  MSc_Thesis_VNV_ETD.pdf 8.27 Mb 00:38:16 00:19:41 00:17:13 00:08:36 00:00:44

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.