Title page for ETD etd-08192009-134818

Type of Document Dissertation
Author Miles, William Clayton
Author's Email Address wcmiles@vt.edu
URN etd-08192009-134818
Title The Design of Stable, Well-Defined Polymer-Magnetite Nanoparticle Systems for Biomedical Applications
Degree PhD
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Richey M. Davis Committee Chair
David F. Cox Committee Member
John Y. Walz Committee Member
Judy S. Riffle Committee Member
William A. Ducker Committee Member
  • brush extension
  • poly(propylene oxide)
  • poly(ethylene oxide)
  • magnetite
  • contrast agent
  • steric stabilization
Date of Defense 2009-08-10
Availability unrestricted
The composition and stability of polymer-magnetite complexes is essential for their use as a treatment for retinal detachment, for drug targeting and delivery, and for use as a MRI contrast agent. This work outlines a general methodology to design well-defined, stable polymer-magnetite complexes. Colloidal modeling was developed and validated to describe polymer brush extension from the magnetite core. This allowed for the observation of deviations from expected behavior as well as the precise control of polymer-particle complex size. Application of the modified Derjaguin-Verwey-Landau-Overbeek (DLVO) theory allowed the determination of the polymer loading and molecular weight necessary to sterically stabilize primary magnetite particles.

Anchoring of polyethers to the magnetite nanoparticle surface was examined using three different types of anchor groups: carboxylic acid, ammonium, and zwitterionic phosphonate. As assessed by dynamic light scattering (DLS), the zwitterionic phosphonate group provided far more robust anchoring than either the carboxylic acid or ammonium anchor groups, which was attributed to an extremely strong interaction between the phosphonate anchor and the magnetite surface. Coverage of the magnetite surface by the anchor group was found to be a critical design variable for the stability of the zwitterionic phosphonate groups, and the use of a tri-zwitterionic phosphonate anchor provided stability in phosphate buffered saline (PBS) for a large range of polymer loadings.

Incorporation of an amphiphlic poly(propylene oxide)-b-poly(ethyelene oxide) (PPO-b-PEO) diblock copolymer attached to the magnetite surface was examined through colloidal modeling and DLS. The relaxivity of the complexes was related to aggregation behavior observed through DLS. This indicated the presence of a hydrophobic interaction between the PPO layers of neighboring complexes. When this interaction was large enough, the complexes exhibited an increased relaxivity and cellular uptake.

Thus, we have developed a methodology that allows for design of polymer-magnetite complexes with controlled sizes (within 8% of predicted values). Application of this methodology incorporated with modified DLVO theory aids in the design of colloidally stable complexes with minimum polymer loading. Finally, determination of an anchor group stable in the presence of phosphate salts at all magnetite loadings allows for the design of materials with minimum polymer loadings in biological systems.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  WilliamMilesDissertation2.pdf 8.44 Mb 00:39:03 00:20:05 00:17:34 00:08:47 00:00:44

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.