Title page for ETD etd-08252003-140424

Type of Document Master's Thesis
Author Dapic, Ignacio
Author's Email Address idapic@vt.edu
URN etd-08252003-140424
Title Numerical Model for the Lateral Compression Response of a Plastic Cup
Degree Master of Science
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Johnson, Eric R. Committee Chair
Case, Scott W. Committee Member
Kapania, Rabesh K. Committee Member
Ohanehi, Donatus C. Committee Member
  • finite element analysis
  • High Impact Polystyrene
  • truncated conical shell
Date of Defense 2003-06-09
Availability unrestricted
A numerical analysis based on the finite element method is developed to simulate the mechanical response of a typical sixteen-ounce plastic drink cup subjected to a lateral compressive load. The aim of the analysis is to simulate a test in which the cup is supported horizontally in a fixture on a testing machine platen, and a loading nose attached to the actuator is displaced downward into the cup. The numerical model is developed using the software packages MSC.Patran, ABAQUS/CAE, and ABAQUS/Standard. The high impact polystyrene material of the cup is modeled as linear elastic, considering isotropic and orthotropic material behavior. The structural model of the cup is a truncated conical shell including a ring at the open end of the cup and circumferential stiffening ribs. The analysis is based on small strain, large rotation shell kinematics, and the loading apparatus of the test is simulated with a rigid, circular cylinder contacting the cup. Coupons cut from the wall of a cup are subjected to tension to determine the ranges of the meridional and circumferential moduli of elasticity. Rings cut from the open end of the cup were tested in diametrical tension to aid in validating the finite element modeling. Reasonable correlation of the simulation to available cup compression test data is achieved. Parametric studies are conducted for several meridional thickness distributions of the cup wall, and for a range of orthotropic material properties.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  DAPICTHESIS.pdf 3.30 Mb 00:15:16 00:07:51 00:06:52 00:03:26 00:00:17

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.