Title page for ETD etd-0898-145634

Type of Document Dissertation
Author McLeod, Michael Allen
Author's Email Address mmcleod@vtvm1.cc.vt.edu
URN etd-0898-145634
Title Injection Molding of Pregenerated Microcomposites
Degree PhD
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Baird, Donald G. Committee Chair
Baird, Donald G. Committee Member
Conger, William L. Committee Member
Davis, Richey M. Committee Member
Loos, Alfred C. Committee Member
Wilkes, Garth L. Committee Member
  • fiber spinning
  • thermotropic liquid crystalline polymer
  • polymer blend
  • pregenerated microcomposite
  • composite
  • injection molding
Date of Defense 1997-12-18
Availability unrestricted
One portion of this work was concerned with injection molding pregenerated microcomposites composed primarily of poly(ethylene terephthalate) (PET) as the matrix and HX1000 as the thermotropic liquid crystalline polymer (TLCP). Several factors were examined to maximize the mechanical properties of these composites, including injection molding temperature, matrix viscosity, and nozzle tip exit diameter. In addition, concentrated strands of HX1000/PET (50/50 wt%) were diluted using both an injection molding grade of PET and an injection molding grade of PBT. From this work, it was determined that the best mechanical properties were produced when the microcomposites were processed at the lowest injection molding temperatures, diluted with PBT, and injection molded using a large nozzle tip exit diameter.

The pregenerated microcomposite properties were compared against theoretical predictions as well as glass-filled PET. It was found that the pregenerated microcomposites had tensile moduli of approximately 70% of theoretical expectations in the machine direction. Additionally, the comparisons against glass-filled PET revealed that at the same weight fraction of reinforcement, the pregenerated microcomposites had lower properties. Still, the composites were found to have smoother surfaces than glass-filled PET and at temperatures up to 150° C the storage and loss moduli of the pregenerated microcomposites were similar to those of glass filled PET. It was concluded that if the theoretically expected levels of reinforcement could be attained, the pregenerated microcomposites processing scheme would be a viable method of producing light weight, wholly thermoplastic composites with smoother surfaces than are obtained with glass reinforcement.

An additional focus of this research was to evaluate the ability to modify the crystallization behavior of a high melting TLCP (HX6000, Tm = 332° C) with a lower melting TLCP (HX8000, Tm = 272°C). It was found that it was possible to tailor the crystallization behavior of these TLCP/TLCP blends by varying the weight fraction of each component, as determined by rheological cooling scans and differential scanning calorimetric cooling tests. Based on the analysis of these TLCPs at the maximum injection molding temperature of 360° C, it was speculated that they had reacted with one another.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  APPENDIX.PDF 823.42 Kb 00:03:48 00:01:57 00:01:42 00:00:51 00:00:04
  CH1.PDF 371.44 Kb 00:01:43 00:00:53 00:00:46 00:00:23 00:00:01
  CH2.PDF 899.96 Kb 00:04:09 00:02:08 00:01:52 00:00:56 00:00:04
  CH3.PDF 317.05 Kb 00:01:28 00:00:45 00:00:39 00:00:19 00:00:01
  CH4.PDF 511.63 Kb 00:02:22 00:01:13 00:01:03 00:00:31 00:00:02
  CH5.PDF 166.66 Kb 00:00:46 00:00:23 00:00:20 00:00:10 < 00:00:01
  CH6.PDF 10.93 Kb 00:00:03 00:00:01 00:00:01 < 00:00:01 < 00:00:01
  PREFACE.PDF 56.30 Kb 00:00:15 00:00:08 00:00:07 00:00:03 < 00:00:01
  VITA.PDF 193.35 Kb 00:00:53 00:00:27 00:00:24 00:00:12 00:00:01

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.