Title page for ETD etd-09082011-215434

Type of Document Dissertation
Author Chang, Ai-Fu
URN etd-09082011-215434
Title Process Modeling of Next-Generation Liquid Fuel Production - Commercial Hydrocracking Process and Biodiesel Manufacturing
Degree PhD
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Liu, Y. A. Committee Chair
Achenie, Luke E. K. Committee Member
Davis, Richey M. Committee Member
Durrill, Preston L. Committee Member
  • product design
  • process optimization
  • biodiesel
  • hydrocracking
  • model
Date of Defense 2011-09-07
Availability unrestricted
This dissertation includes two process modeling studies – (1) predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data – hydrocracking process; and (2) integrated process modeling and product design of biodiesel manufacturing.

1. Predictive Modeling of Large-Scale Integrated Refinery Reaction and Fractionation Systems from Plant Data – Hydrocracking Processes: This work represents a workflow to develop, validate and apply a predictive model for rating and optimization of large-scale integrated refinery reaction and fractionation systems from plant data. We demonstrate the workflow with two commercial processes – medium-pressure hydrocracking unit with a feed capacity of 1 million ton per year and high-pressure hydrocracking unit with a feed capacity of 2 million ton per year in the Asia Pacific. This work represents the detailed procedure for data acquisition to ensure accurate mass balances, and for implementing the workflow using Excel spreadsheets and a commercial software tool, Aspen HYSYS from Aspen Technology, Inc. The workflow includes special tools to facilitate an accurate transition from lumped kinetic components used in reactor modeling to the boiling point based pseudo-components required in the rigorous tray-by-tray distillation simulation. Two to three months of plant data are used to validate models’ predictability. The resulting models accurately predict unit performance, product yields, and fuel properties from the corresponding operating conditions.

2. Integrated Process Modeling and Product Design of Biodiesel Manufacturing: This work represents first a comprehensive review of published literature pertaining to developing an integrated process modeling and product design of biodiesel manufacturing, and identifies those deficient areas for further development. It also represents new modeling tools and a methodology for the integrated process modeling and product design of an entire biodiesel manufacturing train. We demonstrate the methodology by simulating an integrated process to predict reactor and

separator performance, stream conditions, and product qualities with different feedstocks. The results show that the methodology is effective not only for the rating and optimization of an existing biodiesel manufacturing, and but also for the design of a new process to produce biodiesel with specified fuel properties.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Chang_A-F_D_2011.pdf 4.35 Mb 00:20:08 00:10:21 00:09:03 00:04:31 00:00:23

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.