Title page for ETD etd-09152010-235450


Type of Document Dissertation
Author Rock, Christopher
Author's Email Address carock@vt.edu
URN etd-09152010-235450
Title Experimental Studies of Injector Array Configurations for Circular Scramjet Combustors
Degree PhD
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Schetz, Joseph A. Committee Chair
Devenport, William J. Committee Member
O'Brien, Walter F. Jr. Committee Member
Philen, Michael K. Committee Member
Keywords
  • Fuel Injection
  • Mixing
  • Hypersonic Propulsion
  • Supersonic Combustion
  • Scramjet
Date of Defense 2010-09-01
Availability unrestricted
Abstract
A flush-wall injector model and a strut injector model representative of state of the art scramjet engine combustion chambers were experimentally studied in a cold-flow (non-combusting) environment to determine their fuel-air mixing behavior under different operating conditions. The experiments were run at nominal freestream Mach numbers of 2 and 4, which simulates combustor conditions for nominal flight Mach numbers of 5 and 10. The flush-wall injector model consists of sixteen inclined, round, sonic injectors distributed around the wall of a circular duct. The strut injector model has sixteen inclined, round, sonic injectors distributed across four struts within a circular duct. The struts are slender, inclined at a low angle to minimize drag, and have two injectors on each side. The experiments investigated the effects of injectant molecular weight, freestream Mach number, and jet-to-freestream momentum flux ratio on the fuel-air mixing process. Helium, methane, and air injectants were studied to vary the injectant molecular weight over the range of 4-29. All of these experiments were performed to support the needs of an integrated experimental and computational research program, which has the goal of upgrading the turbulence models that are used for Computational Fluid Dynamics predictions of the flow inside a scramjet combustor. The primary goals of this study were to use injector models that represent state of the art scramjet engine combustion chambers to provide validation data to support the development of turbulence model upgrades and to add to the sparse database of mixing results in such configurations. The main experimental results showed that higher molecular weight injectants had approximately the same amount of penetration in the far field as lower molecular weight injectants at the same jet-to-freestream momentum flux ratio. Higher molecular weight injectants also demonstrated a mixing rate that was the same as or slower than lower molecular weight injectants depending on the flow conditions. A comparison of the experimental results for the two different injector models revealed that the flush-wall injector mixed significantly faster than the strut injector in all of the experimental cases.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Rock_CA_D_2010.pdf 13.10 Mb 01:00:38 00:31:11 00:27:17 00:13:38 00:01:09

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.