Title page for ETD etd-09182008-063616

Type of Document Master's Thesis
Author Fuller, Russell M.
URN etd-09182008-063616
Title Neural network estimation of disturbance growth and flow field structure of spatially excited jets
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Sauders, William Committee Chair
Vandsburger, Uri Committee Member
VanLandingham, Hugh F. Committee Member
  • neural networks
  • non-linear identification
  • jet shear flows
Date of Defense 1996-06-15
Availability restricted

Neural networks were applied to the estimation problem consisting of identifying both nearfield and quasi-farfield flow structures of a jet undergoing spatial mode excitation. The evolution of disturbances introduced by a spatially excited jet spans a linear and nonlinear regime in the downstream flow field. For the linear portion, the neural network was trained to identify critical flow field parameters using numerical data generated from linear stability analysis code. It was shown that the neural network could function as a multiple-input adaptive linear combiner over the linear nearfield of the jet flowfield. Beyond the nearfield (2.0 ≤ z/D ≤ 6.0), a back propagation neural network was trained using experimental data captured during different modal excitation patterns. Constant velocity contours for mode 0, mode 1, mode ±1, and mode ±2 jet excitations were accurately estimated using a low-order neural network filter with conditioned inputs. Moderate success was also demonstrated when the network was used to extrapolate flow field parameters outside the initial training set. This demonstration of using neural networks to predict flowfield structure in non-reacting flows is expected to be directly applicable to estimation and control of reacting flows in combustors.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1996.F855.pdf 110.19 Mb 08:30:07 04:22:20 03:49:33 01:54:46 00:09:47
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.