Title page for ETD etd-09202009-155703

Type of Document Dissertation
Author Kim, Kwang Hyung
Author's Email Address kim78@vt.edu
URN etd-09202009-155703
Title Functional Analysis of Secondary Metabolite Biosynthesis-Related Genes in Alternaria brassicicola
Degree PhD
Department Biology
Advisory Committee
Advisor Name Title
Lawrence, Christopher B. Committee Chair
Li, Liwu Committee Member
McDowell, John B. Committee Member
Tholl, Dorothea B. Committee Member
  • fungal pathogenicity
  • Secondary metabolite
  • Alternaria brassicicola
  • Nonribosomal peptide synthetase
  • Polyketide synthase
Date of Defense 2009-09-07
Availability restricted
Alternaria brassicicola is a necrotrophic pathogen that causes black spot disease on virtually all cultivated Brassicas, A. brassicicola is renowned for its ability to prodigiously produce secondary metabolites. To test the hypothesis that secondary metabolites produced by A. brassicicola contribute to pathogenicity, we identified seven nonribosomal peptide synthetases (NPSs) and 10 polyketide synthases (PKSs) in the A. brassicicola genome. The phenotype resulting from knockout mutations of each PKS and NPS gene was investigated with an emphasis on discovery of fungal virulence factors. A highly efficient gene disruption method using a short linear double stranded DNA construct with minimal elements was developed, optimized, and used to functionally disrupt all NPS and PKS genes in A. brassicicola. Three NPS and two PKS genes, and one NPS-like gene appeared to be virulence factors based upon reduced lesion development of each mutant on inoculated green cabbage and Arabidopsis compared with the wild-type strain. Furthermore some of the KO mutants exhibited developmental phenotypic changes in pigmentation and conidiogenesis. To further characterize the roles of several genes of interest in A. brassicicola development and pathogenesis, the genes AbNPS2, AbPKS9, and NPS-like tmpL were selected for in-depth functional analysis. We provide substantial evidence that the AbNPS2-associated metabolite is involved in conidial cell wall construction, possibly as an anchor connecting two cell wall layers. We also characterized a biosynthetic gene cluster harboring the AbPKS9 gene and demonstrated that this cluster is responsible for the biosynthesis of depudecin, an inhibitor of histone deacetylases and a minor virulence factor. Finally, we demonstrated that a NPS-like protein named TmpL is involved in a filamentous fungi-specific mechanism for regulating levels of intracellular reactive oxygen species during conidiation and pathogenesis in both plant and animal pathogenic fungi. Collectively our results indicate that small molecule nonribosomal peptides and polyketides in A. brassicicola play diverse, but also fundamental, roles in fungal development and pathogenesis.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Kim_KH_D_2009.pdf 4.50 Mb 00:20:49 00:10:42 00:09:22 00:04:41 00:00:23
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.