Title page for ETD etd-10182010-121942

Type of Document Dissertation
Author Alfeeli, Bassam
Author's Email Address alfeeli@vt.edu
URN etd-10182010-121942
Title Chemical Micro Preconcentrators Development for Micro Gas Chromatography Systems
Degree PhD
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Agah, Masoud Committee Chair
Hendricks, Robert W. Committee Member
Meehan, Kathleen Committee Member
Taylor, Larry T. Committee Member
Wang, Anbo Committee Member
  • Handheld Chemical Analysis
  • Micro Analytical Systems
  • Breath Analysis
  • Sample Pretreatment
  • MEMS
  • Tenax TA Films
  • Microfabrication
  • DRIE
Date of Defense 2010-10-06
Availability unrestricted
Microelectromechanical systems (MEMS) technology allows the realization of mechanical parts, sensors, actuators and electronics on silicon substrate. An attractive utilization of MEMS is to develop micro instruments for chemical analysis. An example is gas chromatography (GC) which is widely used in food, environmental, pharmaceutical, petroleum/refining, forensic/security, and flavors and fragrances industries. A MEMS-based micro GC (µGC) provides capabilities for quantitative analysis of complex chemical mixtures in the field with very short analysis time and small amounts of consumables.

The aim of this research effort is to enhance the sensitivity and selectivity of µGC instruments by implementing chemical amplification method known as preconcentration. A micro preconcentrator (µPC) extracts the target analytes from the sample matrix, concentrates them, and injects them into the separation column for analysis.

This work resulted in the development of silicon-glass bonded chips consisting of 7 mm x 7 mm x 0.38 mm multiport cavity with thousands of embedded 3D microstructures (to achieve high surface-to-volume ratio) coated with polymeric thin film adsorbents. Deep reactive ion etching (DRIE) was the enabling technology for the realization of µPCs. Several coating methods, such as inkjet printing of polymers and polymer precipitation from solution have been utilized to coat complex geometrical structures. One major outcome was the development of cobweb adsorbent structure. Moreover, the porous polymeric adsorbent Tenax TA in the film form was characterized, for the first time, for μPC application and shown to have similar properties to that of the granular form.

Several μPC designs were experimentally evaluated for their performance in concentrating volatile organic compounds, including cancer biomarkers, Propofol (anesthetic agent), environmental pollutants, and chemical warfare simulants. The possibility of utilizing the μPCs in practical applications such breath analysis was also demonstrated.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Alfeeli_B_D_2010.pdf 4.97 Mb 00:23:01 00:11:50 00:10:21 00:05:10 00:00:26

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.