Title page for ETD etd-10262005-101005

Type of Document Dissertation
Author Franklin, Paul
URN etd-10262005-101005
Title Fatigue design of oil tankers : a design approach
Degree PhD
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Hughes, Owen F. Committee Chair
Johnson, Eric R. Committee Member
Neu, Wayne L. Committee Member
Nikolaidis, Efstratios Committee Member
Plaut, Raymond H. Committee Member
  • Steel Fatigue
  • Tankers Design and construction
Date of Defense 1993-12-15
Availability unrestricted

The oil tankers that operate on the Trans-Alaska Pipeline Service (TAPS) route have exhibited a large number of structural fatigue cracks. These cracks can be attributed to the increase in use of high strength steel in tanker construction and to the harsh operating environment in the Gulf of Alaska. In response to the TAPS fatigue problem, this project examines the topic of preliminary design for fatigue resistance. The TAPS tankers have previously been the target of several studies on the subject of fatigue cracking. Most of these studies have concentrated on reducing the costs and risks involved with operating the current tanker fleet. Preliminary design, however, is oriented at reducing the fatigue risk in future tanker designs. To that end, the design method outlined within concentrates on the level of analysis that is appropriate for preliminary design.

The design method consists of four steps: the specification of a wave environment, generation of a hydrodynamic model and subsequent wave loads, evaluation of cyclic stresses and an assessment of fatigue damage. A series of example calculations that is typical of preliminary design has been performed for one of the TAPS tanker classes. These calculations employed Buckley's climatic

wave spectra, a 3-dimensional panel based hydrodynamics package by Lin and a Miner's rule fatigue assessment based on the S-N curves of the British Welding Institute.

The example calculations yield two important results. First, relatively inexpensive methods can yie1d important and accurate fatigue results; for a side shell longitudinal at the water line the example calculations predict a fatigue life of approximately 3 operating years. This corresponds quite well to the published inspection data and obviously represents insufficient fatigue life. Second, local panel pressures can have a significant contribution to, and even dominate, total fatigue damage in the side shell. This contrasts with conventional fatigue studies of ship hulls which focus on global loads; i.e., hull girder bending.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[BTD] LD5655.V856_1993.F726.pdf 4.40 Mb 00:20:22 00:10:28 00:09:10 00:04:35 00:00:23
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.