Title page for ETD etd-11122001-094938

Type of Document Master's Thesis
Author Namburu, Visala
URN etd-11122001-094938
Title Speech Coder using Line Spectral Frequencies of Cascaded Second Order Predictors
Degree Master of Science
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Beex, A. A. Louis Committee Chair
Baumann, William T. Committee Member
Woerner, Brian D. Committee Member
  • Vector Quantization
  • Speech Coding
  • Cascaded Second Order Predictors
  • Linear Prediction
  • Line Spectral Frequencies
Date of Defense 2001-11-09
Availability unrestricted
A major objective in speech coding is to represent speech with as few bits as possible. Usual transmission parameters include auto regressive parameters, pitch parameters, excitation signals and excitation gains. The pitch predictor makes these coders sensitive to channel errors. Aiming for robustness to channel errors, we do not use pitch prediction and compensate for its lack with a better representation of the excitation signal. We propose a new speech coding approach, Vector Sum Excited Cascaded Linear Prediction (VSECLP), based on code excited linear prediction.

We implement forward linear prediction using five cascaded second order sections - parameterized in terms of line spectral frequency - in place of the conventional tenth order filter. The line spectral frequency parameters estimated by the Direct Line Spectral Frequency (DLSF) adaptation algorithm are closer to the true values than those estimated by the Cascaded Recursive Least Squares - Subsection algorithm. A simplified version of DLSF is proposed to further reduce computational complexity.

Split vector quantization is used to quantize the line spectral frequency parameters and vector sum codebooks to quantize the excitation signals. The effect on reconstructed speech quality and transmission rate, of an increased number of bits and differently split combinations, is analyzed by testing VSECLP on the TIMIT database. The quantization of the excitation vectors using the discrete cosine transform resulted in segmental signal to noise ratio of 4 dB at 20.95 kbps, whereas the same quality was obtained at 9.6 kbps using vector sum codebooks.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  VN_etd.pdf 1.13 Mb 00:05:13 00:02:41 00:02:20 00:01:10 00:00:06

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.