Title page for ETD etd-11132009-150648

Type of Document Master's Thesis
Author Stoakes, Preston John
URN etd-11132009-150648
Title Simulation of Airflow and Heat Transfer in Buildings
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Battaglia, Francine Committee Chair
Ekkad, Srinath V. Committee Member
Paul, Mark R. Committee Member
  • CFD
  • natural ventilation
Date of Defense 2009-10-30
Availability unrestricted
Energy usage in buildings has become a major topic of research in the past decade, driven by the increased cost of energy. Designing buildings to use less energy has become more important, and the ability to analyze buildings before construction can save money in design changes. Computational fluid dynamics (CFD) has been explored as a means of analyzing energy usage and thermal comfort in buildings. Existing research has been focused on simple buildings without much application to real buildings. The current study attempts to expand the research to entire buildings by modeling two existing buildings designed for energy efficient heating and cooling. The first is the Viipuri Municipal Library (Russia) and the second is the Margaret Esherick House (PA). The commercial code FLUENT is used to perform simulations to study the effect of varying atmospheric conditions and configurations of openings. Three heating simulations for the library showed only small difference in results with atmospheric condition or configuration changes. A colder atmospheric temperature led to colder temperatures in parts of the building. Moving the inlet only slightly changed the temperatures in parts of the building. The cooling simulations for the library had more drastic changes in the openings. All three cases showed the building cooled quickly, but the velocity in the building was above recommended ranges given by ASHRAE Standard 55. Two cooling simulations on the Esherick house differed only by the addition of a solar heat load. The case with the solar heat load showed slightly higher temperatures and less mixing within the house. The final simulation modeled a fire in two fireplaces in the house and showed stratified air with large temperature gradients.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Stoakes_PJ_T_2009.pdf 7.29 Mb 00:33:45 00:17:21 00:15:11 00:07:35 00:00:38

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.