Title page for ETD etd-11172012-040340

Type of Document Master's Thesis
Author Mathison, Steve Richard
URN etd-11172012-040340
Title Nonlinear analysis for the response and failure of compression- loaded angle-ply laminates with a hole
Degree Master of Science
Department Engineering Mechanics
Advisory Committee
Advisor Name Title
Herakovich, Carl T. Committee Chair
Reddy, Junuthula N. Committee Chair
Pindera, Marek-Jerzy Committee Member
  • Laminated materials
Date of Defense 1987-05-05
Availability restricted

The objective of this study was to determine the effect of nonlinear material behavior on the response and failure of unnotched and notched angle-ply laminates under uniaxial compressive loading. The endochronic theory was chosen as the constitutive theory to model the AS4/3502 graphite-epoxy material system.

Three-dimensional finite element analysis incorporating the endochronic theory was used to determine the stresses and strains in the laminates. An incremental/iterative initial strain algorithm was used in the finite element program. To increase computational efficiency, a 180° rotational symmetry relationship was utilized and the finite element program was vectorized to run on a super computer. Laminate response was compared to experiment revealing excellent agreement for both the unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were examined and are presented, comparing linear elastic analysis to the inelastic endochronic theory analysis.

A failure analysis of the unnotched and notched laminates was performed using the quadratic tensor polynomial. Predicted fracture loads compared well with experiment for the unnotched laminates, but were very conservative in comparison with experiments for the notched laminates.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1987.M37.pdf 8.17 Mb 00:37:49 00:19:27 00:17:01 00:08:30 00:00:43
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.