DEPLOYABLE INFRASTRUCTURE IN SUPPORT OF SCIENCE AND EDUCATION

Jonathan Lee King

Thesis submitted to the faculty of School of Architecture + Design in the Virginia Polytechnic Institute and State University, College of Architecture and Urban Studies in partial fulfillment of the requirements for the degree of Master of Science in Architecture-concentration Industrial Design.

Robert Dunay, Chair
Robert Schubert
Ed Dorsa

May, 4th 2009
Blacksburg, Virginia

Keywords: PLUG, Modular Construction, Design Research, Digital Fabrication, Remote research, Deployable, Portable, Laboratory, and User Assembly

ABSTRACT

P.L.U.G. is a prototypical solution to a highly specialized design problem that emerged in support of remote biological field research in the Mahale mountains of Western Tanzania. In collaboration with researchers from the Virginia Maryland Regional College of Veterinary Medicine's (VMRCVM) Bush to Base Bioinformatics (B2B) group a team of students and faculty from the Virginia Tech School of Architecture + Design designed, constructed, tested, and deployed the mobile field laboratory which houses up to four researchers and includes clean laboratory space, living accommodation, autonomous electricity generation, and a satellite-based communications network. P.L.U.G. consists of two primary elements, a rigid enclosed laboratory and fabric super structure that are constructed using a series of functionally-complex building components that are designed to be carried and assembled by two researchers, in one day, without the use of tools. (Kaur et al. 2007) The resulting system can be mass produced and utilized in the establishment of infrastructure in remote, environmentally sensitive, and unstable environments and has implication in disaster relief housing, human health stations, remote research, mobile educational facilities, and any other environment or event that requires rapidly deployable, self-sufficient infrastructure.

The prototype laboratory was successfully deployed during the summer of 2007 and has been field tested by the Virginia Maryland College of Veterinary Medicine (VMRCVM) Bush-2-Base Bioinformatics (B2B) research group. Currently the laboratory program exists as part of a newly developed long-term research initiative surrounding Deployable Infrastructure in Support of Science and Education (DISSed Lab) initiated by the author in response to perceived demand for such accommodation.
ACKNOWLEDGEMENTS

Primary Faculty Advisor School of Architecture + Design

Professor Matthew Lutz,
Assistant Professor of Interior Design

Contributing Faculty Advisors
Virginia-Maryland Regional College of Veterinary Medicine

Dr. Taranjit Kaur
Assistant Professor of Biomedical Sciences and Pathology

Dr. Jatinder Singh
Adjunct Research Assistant Professor of Veterinary Medicine

Primary Student Project Leader School of Architecture + Design

Nathan King,
Graduate Student, Industrial Design and Architecture

Student Design Team
Nathan King, Industrial Design
Melissa Pyles, Interior Design
David B. Clark II, Architecture
Katie Dufresne, Interior Design
Clay Moulton, Industrial Design
Jason Zawitkowski, Architecture

Student Construction Team
Nathan King, Industrial Design
Melissa Pyles, Interior Design
David B. Clark II, Architecture
Jason Zawitkowski, Architecture

Tanzania Deployment Team
Nathan King, Industrial Design
David B. Clark II, Architecture
Clive Vorster, Environmental Design and Planning

Extended Team
Jennifer Ash, Interior Design
Chris Carpenter, Community Volunteer
Howard Chen, Industrial Design
Bert Green, Industrial Design
Shelly Gross, Interior Design
Danielle Jove, Interior Design
Paul King, Community Volunteer
Brandon Lingenfelser, Architecture
Christine Manfredo, Industrial Design
John Mills, Industrial Design
Jamie Radeke, Interior Design
Brian Szekely, VMRCVM
TABLE OF CONTENTS

Abstract
 vii List of figures
 iv Acknowledgements

2 Introduction
 2 Scales of Modularity
 6 Evoking Process

12 Deployable Infrastructure in Support of Science and Education
 12 P.L.U.G Portable Laboratory on Uncommon Grounds
 14 Chassis
 15 Three distinct programmatic functions
 17 Superstructure
 20 Tent

22 PLUG L-Series version 1.0
 22 Design and Deployment

75 References
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2005 SOLAR DECATHLON HOUSE IN TRANSIT. PHOTOGRAPH BY ROBERT DUNAY (WITH PERMISSION)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PLUG COMPONENTS ON LAKE TANGANYIKA. PHOTOGRAPH BY AUTHOR.</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>SEEDS TRUSS COMPONENTS IN TRANSPORT. PHOTOGRAPH BY AUTHOR.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>NICK-A-PARENT. PHOTOGRAPH BY AUTHOR.</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>ROBOTIC FOLDING OF ECLIPSISS FACADE PROTOTYPE. PHOTOGRAPH BY AUTHOR.</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>RENDERING COURTESY OF MATT LUTZ AND THE PLUG TEAM. (WITH PERMISSION)</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>RENDERING OF PLUG LAB COURTESY OF MATT LUTZ AND THE PLUG TEAM. (WITH PERMISSION)</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>RENDERING OF PLUG LAB COURTESY OF MATT LUTZ AND THE PLUG TEAM. (WITH PERMISSION)</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>RENDERING OF PLUG LAB COURTESY OF MATT LUTZ AND THE PLUG TEAM. (WITH PERMISSION)</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>CONCEPTUAL SKETCH OF PLUG LAB. CREATED BY THE AUTHOR.</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>TOTEABLE HUT (TUT) PHOTOGRAPH BY MAT LUTZ (WITH PERMISSION)</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>SUPER STRUCTURE MODELS. PHOTOGRAPH BY AUTHOR.</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>PROTOTYPICAL SUPERSTRUCTURE DETAIL. PHOTOGRAPH BY AUTHOR.</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>HALF SCALE PHYSICAL PROTOTYPE. PHOTOGRAPH BY AUTHOR.</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>FIBERGLASS PULTRUSION DURING FACTORY TOUR. PHOTOGRAPH BY AUTHOR.</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>MELISSA PYLES DURING FABRICATION CHASSIS BEAMS. PHOTOGRAPH BY AUTHOR.</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td>PHYSICAL TESTING OF INITIAL PROTOTYPE. PHOTOGRAPH BY AUTHOR.</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>STRUCTURAL PERFORMANCE TESTING - IT SEEMS OK. PHOTOGRAPH BY AUTHOR.</td>
<td>27</td>
</tr>
<tr>
<td>19</td>
<td>JASON ZAWITKOWSKI DURING FABRICATION OF END FRAMES. PHOTOGRAPH BY AUTHOR.</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>TENT FABRICATION BY ED WOLFGO. PHOTOGRAPH BY MATT LUTZ (WITH PERMISSION)</td>
<td>27</td>
</tr>
<tr>
<td>21</td>
<td>TENT FABRICATION BY ED WOLFGO. PHOTOGRAPH BY MATT LUTZ (WITH PERMISSION)</td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td>MATT LUTZ TIEING ONE ON DURING TENT TESTING. PHOTOGRAPH BY AUTHOR.</td>
<td>29</td>
</tr>
<tr>
<td>23</td>
<td>CHIP CLARK ALONE IN AN EMPTY SHIPPING CONTAINER PRIOR TO SHIPPING PHOTO BY AUTHOR.</td>
<td>29</td>
</tr>
<tr>
<td>24</td>
<td>LOADED CONTAINER ARRIVING IN KIGOMA TANZANIA. PHOTOGRAPH BY AUTHOR.</td>
<td>31</td>
</tr>
<tr>
<td>25</td>
<td>NATAN KING OPENING THE CONTAINER PHOTOGRAPH BY CLIVE VORSTER (WITH PERMISSION)</td>
<td>31</td>
</tr>
<tr>
<td>26</td>
<td>CONTAINER UNLOADING. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>33</td>
</tr>
<tr>
<td>27</td>
<td>POST TRANSPORT GEAR INSPECTION. PHOTOGRAPH BY AUTHOR.</td>
<td>33</td>
</tr>
<tr>
<td>28</td>
<td>TRANSFERRING THE FINAL BUILDING COMPONENTS TO TRUCK. PHOTOGRAPH BY AUTHOR.</td>
<td>33</td>
</tr>
<tr>
<td>29</td>
<td>COMPONENTS ON TRUCK EN ROUTE TO THE BOAT. PHOTOGRAPH BY AUTHOR.</td>
<td>35</td>
</tr>
<tr>
<td>30</td>
<td>YES. THAT IS THE BOAT WE ARE TAKING. PHOTOGRAPH BY AUTHOR.</td>
<td>35</td>
</tr>
<tr>
<td>31</td>
<td>BOAT LOADING- STARTING AT DUSK. PHOTOGRAPH BY AUTHOR.</td>
<td>37</td>
</tr>
<tr>
<td>32</td>
<td>EACH BATTERY WEIGHS 120 LBS. PHOTOGRAPH BY AUTHOR.</td>
<td>37</td>
</tr>
<tr>
<td>33</td>
<td>ONE HORSE POWER FOR EVER ONE HUNDRED POUNDS OF GEAR. PHOTOGRAPH BY AUTHOR.</td>
<td>37</td>
</tr>
<tr>
<td>34</td>
<td>BOAT, GEAR, AND SLEEPING CHIP. PHOTOGRAPH BY AUTHOR.</td>
<td>39</td>
</tr>
<tr>
<td>35</td>
<td>THE CREW OF OUR EDMUND FITZGERALD. PHOTOGRAPH BY AUTHOR.</td>
<td>39</td>
</tr>
<tr>
<td>36</td>
<td>WALL PANELS PACKED FOR MAXIMUM PROTECTION. PHOTOGRAPH BY AUTHOR.</td>
<td>39</td>
</tr>
<tr>
<td>37</td>
<td>WALL PANELS PACKED FOR MAXIMUM PROTECTION. PHOTOGRAPH BY AUTHOR.</td>
<td>41</td>
</tr>
<tr>
<td>38</td>
<td>LANDFALL AT DAWN. PHOTOGRAPH BY AUTHOR.</td>
<td>41</td>
</tr>
<tr>
<td>39</td>
<td>BOAT AWAITING UNLOADING- CHIP STILL SLEEPING. PHOTOGRAPH BY AUTHOR.</td>
<td>41</td>
</tr>
<tr>
<td>40</td>
<td>OFFSHORE BOAT UNLOADING. PHOTOGRAPH BY AUTHOR.</td>
<td>43</td>
</tr>
<tr>
<td>41</td>
<td>A GROUP OF BUILDING COMPONENTS CARRIED FORM THE BOAT. PHOTOGRAPH BY AUTHOR.</td>
<td>43</td>
</tr>
<tr>
<td>42</td>
<td>ALL STRUCTURAL HARDWARE CARRIED IN THIS BOX. PHOTOGRAPH BY AUTHOR.</td>
<td>43</td>
</tr>
<tr>
<td>43</td>
<td>ALL STRUCTURAL HARDWARE WAS CARRIED IN THIS BOX. PHOTOGRAPH BY AUTHOR.</td>
<td>45</td>
</tr>
<tr>
<td>44</td>
<td>DREW LATCH AND HAND SCREW TOOL-LESS DETAIL. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>HASSIS DURING ASSEMBLY. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>CHASSIS DURING ASSEMBLY. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>47</td>
</tr>
<tr>
<td>47</td>
<td>STONE PAD USED TO SUPPORT FOUNDATION JACKS. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>SCREW-JACK FOUNDATION SYSTEM. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)</td>
<td>47</td>
</tr>
<tr>
<td>49</td>
<td>INSTALLATION OF HELICAL PIER. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>INSTALLATION AND WIRING OF LABORATORY BATTERY BANK. PHOTOGRAPH BY AUTHOR.</td>
<td>49</td>
</tr>
<tr>
<td>51</td>
<td>CHIP WITH TERMINAL GREASE IN LEFT EYE. PHOTOGRAPH BY AUTHOR.</td>
<td>49</td>
</tr>
<tr>
<td>52</td>
<td>INSTALLATION OF HELICAL PIER USED TO RESIST UP-LIFT. PHOTOGRAPH BY AUTHOR.</td>
<td>51</td>
</tr>
<tr>
<td>53</td>
<td>ALL-PURPOSE ARCHITECTURAL ASSEMBLY DETAIL. PHOTOGRAPH BY AUTHOR.</td>
<td>51</td>
</tr>
<tr>
<td>54</td>
<td>COMPLETED FRAME WITH LOWER LEVEL FLOORING INSTALLED. PHOTOGRAPH BY AUTHOR.</td>
<td>51</td>
</tr>
<tr>
<td>55</td>
<td>INSTALLATION OF SIPS. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>53</td>
</tr>
<tr>
<td>56</td>
<td>INSTALLATION OF SIPS. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>53</td>
</tr>
<tr>
<td>57</td>
<td>ASSEMBLED LABORATORY BOX. PHOTOGRAPH BY AUTHOR.</td>
<td>53</td>
</tr>
<tr>
<td>58</td>
<td>ASSEMBLED LABORATORY BOX. PHOTOGRAPH BY AUTHOR.</td>
<td>55</td>
</tr>
<tr>
<td>59</td>
<td>FIELD REPAIRS DUE TO ADHESIVE FAILURE. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>TENT FRAME ASSEMBLY. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)</td>
<td>55</td>
</tr>
<tr>
<td>61</td>
<td>STRUCTURAL DETAIL. PHOTOGRAPH BY AUTHOR.</td>
<td>57</td>
</tr>
<tr>
<td>62</td>
<td>LABORATORY WITH TENT FRAME. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>57</td>
</tr>
<tr>
<td>63</td>
<td>TENSIONING OF FABRIC SUPERSTRUCTURE DURING INSTALLATION. PHOTOGRAPH BY AUTHOR</td>
<td>57</td>
</tr>
<tr>
<td>64</td>
<td>TENSIONING OF FABRIC SUPERSTRUCTURE DURING INSTALLATION. PHOTOGRAPH BY AUTHOR</td>
<td>59</td>
</tr>
<tr>
<td>65</td>
<td>2000 LITER NON-POTABLE WATER STORAGE TANK. PHOTOGRAPH BY AUTHOR.</td>
<td>59</td>
</tr>
<tr>
<td>66</td>
<td>A TANGLED MESS OF WATER PIPING AND CIRCUS TENT. PHOTOGRAPH BY AUTHOR.</td>
<td>59</td>
</tr>
<tr>
<td>67</td>
<td>HELICAL WATER PUMP. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>61</td>
</tr>
<tr>
<td>68</td>
<td>HOSE CLAMPS WERE USED RELATIVELY APPROPRIATELY. PHOTOGRAPH BY AUTHOR.</td>
<td>61</td>
</tr>
<tr>
<td>69</td>
<td>FIELD DESIGNED AND CONSTRUCTED PORTABLE WATER PUMPING STATION. PHOTOGRAPH BY AUTHOR.</td>
<td>61</td>
</tr>
<tr>
<td>70</td>
<td>WASTE MANAGEMENT INFRASTRUCTURE UNDER CONSTRUCTION. PHOTOGRAPH BY AUTHOR.</td>
<td>63</td>
</tr>
<tr>
<td>71</td>
<td>THE PV-POTTY SUPPORTS THE PHOTOVOLTAIC PANELS. PHOTOGRAPH BY AUTHOR.</td>
<td>63</td>
</tr>
<tr>
<td>72</td>
<td>THE PV-POTTY SUPPORTS THE PHOTOVOLTAIC PANELS. PHOTOGRAPH BY AUTHOR.</td>
<td>65</td>
</tr>
<tr>
<td>73</td>
<td>UMBILICAL FEEDS THE BATTERY BANK UNDER THE LABORATORY . PHOTOGRAPH BY AUTHOR.</td>
<td>65</td>
</tr>
<tr>
<td>74</td>
<td>FIRST NIGHT IN THE LAB WITH POWER. BEARDS AT THREE WEEKS. PHOTOGRAPH BY AUTHOR.</td>
<td>65</td>
</tr>
<tr>
<td>75</td>
<td>FIRST NIGHT IN THE LAB WITH POWER. BEARDS AT THREE WEEKS. PHOTOGRAPH BY AUTHOR.</td>
<td>65</td>
</tr>
<tr>
<td>76</td>
<td>OPTIONAL VENTILATION SHAFT. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)</td>
<td>67</td>
</tr>
<tr>
<td>77</td>
<td>UPPER LEVEL LIVING SPACE WITH WALKABLE VENTILATION GRATING. PHOTOGRAPH BY AUTHOR.</td>
<td>67</td>
</tr>
<tr>
<td>78</td>
<td>COMPLETED PLUG PROTOTYPE IN MAHALE. PHOTOGRAPH BY AUTHOR.</td>
<td>67</td>
</tr>
<tr>
<td>79</td>
<td>COMPLETED PLUG PROTOTYPE IN MAHALE. PHOTOGRAPH BY AUTHOR.</td>
<td>69</td>
</tr>
<tr>
<td>80</td>
<td>COMPLETED PLUG COMPUND. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>69</td>
</tr>
<tr>
<td>81</td>
<td>FIRST NIGHT IN THE LAB WITH POWER. PHOTOGRAPH BY AUTHOR.</td>
<td>71</td>
</tr>
<tr>
<td>82</td>
<td>A GIFT OF FISH. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)</td>
<td>71</td>
</tr>
<tr>
<td>83</td>
<td>COMPLETED PLUG PROTOTYPE IN MAHALE. PHOTOGRAPH BY AUTHOR.</td>
<td>71</td>
</tr>
<tr>
<td>84</td>
<td>PROJECT EMBARC AT NORWICH UNIVERSITY. PHOTOGRAPH JENNIFER LANGILLE (WITH PERMISSION)</td>
<td>71</td>
</tr>
<tr>
<td>85</td>
<td>AWAITING A FLIGHT AT THE KIGOMA AIRPORT. PHOTO BY CHIP CLARK (WITH PERMISSION)</td>
<td>73</td>
</tr>
</tbody>
</table>
INTRODUCTION

Scales of Modularity

Graduate research was initiated by an interest in the convergence of architecture and industrial design. As a forum for understanding the nature of this relationship my research quickly migrated toward the design of modular and user assembled building and material systems. Investigations into modular building typologies began with participation in the Virginia Tech Solar Decathlon entry in 2005. Programmatic constraints prescribed a single transportable module that could, following extensive off site construction, be readily transported and deployed on site. This method of building allowed for a mobile dwelling that could arrive on site and become operational within a matter of hours. Immediately following the competition an opportunity to directly compare this single transportable unit to a similarly designed modular component system came in the form of an auxiliary structure to ABC’s Extreme Makeover: Home Edition house in Blacksburg Virginia. This structure, while similar in material and form to the Solar Decathlon entry, differed greatly in assembly type. The garden meditation structure was an assembly of large crane-hoisted modular components that were built on campus and transported to the site for assembly.

Simultaneous, and ongoing research into manufactured, modular building associated with the design, fabrication and deployment of a field-ready mobile research station began in September 2005 as the thesis defended for partial completion of the Master of Science in Architecture, concentration Industrial Design, with an interdisciplinary group of students. The PLUG (Portable Living on Uncommon Grounds) project is primarily focused on the development of a series of laboratories for use in remote and environmentally sensitive areas. PLUG currently exists
as a prototype used in the Mahale Mountains of Western Tanzania. The laboratory relies on a group of manufactured components that can be easily carried by two researchers, assembled on site in one day without the use of tools, and upon completion of research, removed with limited site disturbance. To this end research continues in the development of highly adaptable, user assembled Infrastructure that can be deployed for use as disaster relief housing, remote mobile laboratories, human health centers, educational facilities, and any situation or environment that requires a low impact, rapidly deployable, autonomous infrastructure. The prototype laboratory was successfully deployed during the summer of 2007 and has been field tested by the Virginia Maryland College of Veterinary Medicine (VMRCVM) Bush-2-Base Bioinformatics (B2B) research group. Currently the laboratory program exists as part of a newly developed long-term research initiative surrounding Deployable Infrastructure in Support of Science and Education (DISSed Lab) initiated by the author in response to perceived demand for such accommodation.

As field testing of the PLUG prototype continues, the design thesis for the first professional Master of Architecture degree surrounded the design, fabrication, and deployment of a series of component based building assemblies. One, the SEEDS Pavilion At Hawks Ridge, serves as the home to a local environmental children's field camp. The pavilion continues the investigation of user assembled construction and is based on a component group that can be assembled on-site by camp children. Each building component was manufactured using on campus CNC (Computer Numerically Controlled) and wood working facilities and assembled on site by a group of supervised SEEDS camp student-volunteers during a one-week design build workshop at the Hawke’s Ridge Preserve in Floyd, Virginia. The form of the structure is derived, in part, by the limitation of component number, size, and assembly sequence and represents the conflict between a parametrically derived series of prescriptive shapes and the forms that resulted...
during the exploration of the physical system itself. This component-based construction is made possible by a series of joint assemblies designed to accommodate a wide variety of local building materials and variations in on-site conditions by providing a ‘sloppy detail’ that enables a high degree of tolerance.

Evoking Process

Parallel research was conducted surrounding industrialized process and emerging building technologies based on program specific requirements of the projects described. Each structure represents various potential for industrialized fabrication. While the initial two structures carry the promise of off site, factory construction, the PLUG program, in combination with the investigation into user assembled building components, carries the strongest claim for a move into industrialized component production. Plug’s chassis was fabricated using numerically controlled manufacturing technology and the components were generated, analyzed, and manufactured using in Computer Aided Design (CAD), Computer Aided Engineering (CAE) and Computer Aided Manufacturing (CAM) environments. Each individual component of the pavilion structure was designed using CAD and, following computational finite element analysis were to be produced using a numerically controlled machines. Related research conducted during the development of the 2009 Solar Decathlon Entry led to the recent fabrication of a mobile building chassis and structural frame for use in the Virginia Tech LumenHAUS. The culmination of this research will serve as a basis for future investigation of CAM technologies and their potential utilization in automated building component manufacturing.

In service to ongoing design-build efforts, existing as individual investigative initiatives, and instantiated in the recently developed Center for Design Research, Design Robotics Laboratory, coincident research was conducted relating to digital design, fabrication, and related material sys-
tems. The previously described, Portable Laboratory on Un-
common Grounds (PLUG) project represents a pedagogical
design-build milestone through the integration of Building
Information Modeling (BIM) as an enabling mechanism for
trans-disciplinary collaboration. The use of BIM allowed
students from Industrial Design, Architecture, and Interior
Design to collaborate on the design of individual compo-
nents in response to specific programmatic concerns with in
a 3D digital prototyping (CAD) environment. The demand
for deployability forced a merger of both a top-down
architectural design process and bottom up development of
functionally complex building components that reduce the
complications associated with on-site assembly and enable
portability. By addressing complexity at the component
level in conjunction with material and process investigation
a pragmatic solution emerged that allowed the architectural
intention to be realized while solving for a criterion driven
design problem.

While PLUG arrived at numerically controlled
manufacturing as a pragmatic outcome to a program specific
requirement a separate mechanism for experimentation was
developed to isolate numeric processes as a generator for,
rather than a solution to, a design problem. Through the
evocation of numerically controlled processes as an impetus
for a series of furniture prototypes entitled Industrialized
Furniture, a research trajectory was established that guided
thirteen design students in pursuit of opportunities rather
than solutions. These prototypes pushed the boundaries of
the contemporary digital design methodologies and resulted
in the innovative processes and workflow considerations
that enabled a series of anthropometric measurements to
parametrically control a digital form that could be rationally
discretized, manufactured, and assembled. In addition to fa-
cilitating process development this research enabled specific
material investigation leading to the discovery of conditions
as a result of the controlled interaction of material proper-
ties and digital processes. The divergent studies of process
and condition were reconciled in the recently developed
Eclipsis system that enables the creation of specific architectural spatial condition through the integration of digital design and manufacturing processes. Prototypes of the Industrialized Furniture experiments were exhibited in multiple international furniture fairs and exhibitions.

During graduate study a Virginia Tech a trans-disciplinary investigation into modular construction began with a project involving a complete, transportable, housing unit and has led to the generation of form based on groups of small construction modules. Through this design research an ability to evaluate the nature of modularity and the appropriateness of specific aspects surrounding this notion has emerged in parallel to a growing understanding of material systems. The potential exists for a unique opportunity to make immediate advancements through the merger of architecture, building practice, computational design, manufacturing, and material systems into a product-based architecture that enables appropriate and rapid solutions to growing demands for high-performance low-cost construction while maintaining the ever important ability to realize architectural intention. If an opportunity to re-purpose labor and infrastructure to the task of manufactured building components is aligned with the presence of knowledgeable design professionals and tested methods, immediate impact could be made on the nature of building and design.

The prototypes presented in this collection are designed objects ranging from small custom fasteners to fully operable portable housing units across many disciplines. In all cases the designed objects became a forum for research and are both the result of and impetus for, further investigation. Each project should be seen as a process study in the context of design research to be evaluated not only by their effectiveness as a designed object but by their ability to evoke and sustain a community of conversations, ideas, and research efforts. This experimentation now serves as a foundation for a new series of continuing research efforts realized through collaboration with the Virginia Tech, School of Architecture + Design, Center for design research and during doctoral studies at the Harvard Graduate School of Design.
DEPLOYABLE INFRASTRUCTURE IN SUPPORT OF SCIENCE AND EDUCATION

P.L.U.G Portable Laboratory on Uncommon Grounds*

Note: The written description of the PLUG project has been removed from the electronic submission of this document. For further documentation please contact the author or reference previously published text.

* PLUG is an acronym developed by Nathan King in the fall of 2005 to refer to the prototypical laboratory developed and presented here. The ‘Deployable Infrastructure in Support of Science and Education’ initiative is ongoing and was developed by Nathan King in 2009 as a wholly distinct effort. Quoted coauthored text was previously published as a poster submitted to the Virginia Tech-Dean’s Forum on the Environment in 2007, by authors: Dr. Taranjit Kaur, Matthew Lutz, Dr. Jatinder Singh, and Nathan King and is used under fair-use guidelines. Every effort has been made to insure appropriate documentation. Official citation, below, can also be found in the references section of this document.

FIGURE 6. RENDERING OF PLUG CHASSIS COURTESY OF MATT LUTZ AND THE PLUG TEAM. (WITH PERMISSION)
Three distinct programmatic functions

FIGURE 7. RENDERING OF PLUG LAB COURTESY OF MATT LUTZ AND THE PLUG TEAM. (WITH PERMISSION)
Superstructure

Figure 8. Rendering of Plug Lab courtesy of Matt Lutz and the Plug Team. (With permission)
FIGURE 9. RENDERING OF PLUG LAB COURTESY OF MATT LUTZ AND THE PLUG TEAM. (WITH PERMISSION.)
PLUG L-SERIES VERSION 1.0

Design and Deployment

The following series of images are intended to provide a snapshot of the extensive design and testing process as well as begin to introduce the story of PLUG’s deployment in the Mahale Mountains in western Tanzania. Both accounts are better, and often, told at the Three Penny Taproom or over a campfire and the author welcomes this opportunity to share our story. Additional documentation regarding the development and deployment can be found in the forthcoming book surrounding the project which will be available from the author or by way of the School of Architecture + Design Library.
FIGURE 11. TOTEABLE HUT (TUT) PHOTOGRAPH BY MATT LUTZ (WITH PERMISSION)
FIGURE 12. SUPER STRUCTURE MODELS. PHOTOGRAPH BY AUTHOR.
FIGURE 13. PROTOYPICAL SUPERSTRUCTURE DETAIL. PHOTOGRAPH BY AUTHOR.
FIGURE 14. HALF SCALE PHYSICAL PROTOTYPE. PHOTOGRAPH BY AUTHOR.
FIGURE 15. FIBERGLASS PULTRUSION DURING FACTORY TOUR. PHOTOGRAPH BY AUTHOR.
FIGURE 16. MELISSA PYLES DURING FABRICATION CHASSIS BEAMS. PHOTO BY AUTHOR.
FIGURE 17. PHYSICAL TESTING OF INITIAL PROTOTYPE. PHOTO BY AUTHOR.
FIGURE 18. STRUCTURAL PERFORMANCE TESTING—IT SEEMS OK. PHOTO BY AUTHOR.
FIGURE 19. JASON ZAWITKOWSKI DURING FABRICATION OF END FRAMES. PHOTOGRAPH BY AUTHOR.
FIGURE 20. TENT FABRICATION BY EXPERT CRAFTSMAN ED WOLFORD. PHOTOGRAPH BY MATT LUTZ (WITH PERMISSION)
FIGURE 21. TENT FABRICATION BY EXPERT CRAFTSMAN ED WOLFORD. PHOTOGRAPH BY MATT LUTZ (WITH PERMISSION)
FIGURE 22. MATT LUTZ TIEING ONE ON DURING TENT TESTING. PHOTO BY AUTHOR.
FIGURE 23. CHIP CLARK ALONE IN AN EMPTY SHIPPING CONTAINER PRIOR TO SHIPPING PHOTO BY AUTHOR.
FIGURE 24. LOADED CONTAINER ARRIVING IN KIGOMA TANZANIA. PHOTOGRAPH BY AUTHOR.

FIGURE 25. NATHAN KING OPENING THE CONTAINER IN KIGOMA, TANZANIA. PHOTOGRAPH BY CLIVE VORSTER (WITH PERMISSION).
FIGURE 26. CONTAINER UNLOADING. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)

FIGURE 27. POST TRANSPORT GEAR INSPECTION. PHOTOGRAPH BY AUTHOR.

FIGURE 28. TRANSFERRING THE FINAL BUILDING COMPONENTS TO TRUCK. PHOTOGRAPH BY AUTHOR.
FIGURE 29. COMPONENTS ON TRUCK EN ROUTE TO THE BOAT. PHOTO BY AUTHOR.

FIGURE 30. YES, THAT IS THE BOAT WE ARE TAKING. VIEW OF CARGO BOAT AND LAKE FROM TRUCK. PHOTO BY AUTHOR.
FIGURE 31. BOAT LOADING - STARTING AT DUSK. PHOTOGRAPH BY AUTHOR.

FIGURE 32. EACH BATTERY WEIGHS 120 LBS. PHOTOGRAPH BY AUTHOR.

FIGURE 33. ONE HORSE POWER FOR EVERY ONE HUNDRED POUNDS OF GEAR. PHOTOGRAPH BY AUTHOR.
FIGURE 34. BOAT, GEAR, AND SLEEPING CHIP. PHOTOGRAPH BY AUTHOR.

FIGURE 35. THE CREW OF OUR EDMUND FITZGERALD. PHOTOGRAPH BY AUTHOR.

FIGURE 36. WALL PANELS PACKED FOR MAXIMUM PROTECTION. PHOTOGRAPH BY AUTHOR.
FIGURE 37. WALL PANELS PACKED FOR MAXIMUM PROTECTION. PHOTOGRAPH BY AUTHOR.

FIGURE 38. LANDFALL AT DAWN. PHOTOGRAPH BY AUTHOR.

FIGURE 39. BOAT AWAITING UNLOADING—CHIP STILL SLEEPING. PHOTOGRAPH BY AUTHOR.
FIGURE 40. OFFSHORE BOAT UNLOADING. PHOTOGRAPH BY AUTHOR.

FIGURE 41. A GROUP OF BUILDING COMPONENTS CARRIED FROM THE BOAT. PHOTOGRAPH BY AUTHOR.

FIGURE 42. ALL STRUCTURAL HARDWARE WAS CARRIED IN THIS BOX. PHOTOGRAPH BY AUTHOR.
FIGURE 43. ALL STRUCTURAL HARDWARE WAS CARRIED IN THIS BOX. PHOTO BY AUTHOR.

FIGURE 44. DRAW LATCH AND HAND SCREW TOOL-LESS STRUCTURAL DETAIL. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)

FIGURE 45. STRUCTURAL CHASSIS DURING ASSEMBLY. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)
FIGURE 46. STRUCTURAL CHASSIS DURING ASSEMBLY. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)

FIGURE 47. STONE PAD USED TO SUPPORT FOUNDATION JACKS. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)

FIGURE 48. DEPLOYMENT OF SCREW-JACK FOUNDATION SYSTEM. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)
FIGURE 49. INSTALLATION OF HELICAL PIER USED TO RESIST UP-LIFT. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION).

FIGURE 50. INSTALLATION AND WIRING OF LABORATORY BATTERY BANK. PHOTOGRAPH BY AUTHOR.

FIGURE 51. CONSEQUENCES OF BATTERY INSTALLATION – CHIP WITH TERMINAL GREASE IN LEFT EYE. PHOTOGRAPH BY AUTHOR.
FIGURE 52. INSTALLATION OF HELICAL PIER USED TO RESIST UP-LIFT. PHOTOGRAPH BY AUTHOR.

FIGURE 53. ALL-PURPOSE ARCHITECTURAL ASSEMBLY DETAIL. PHOTOGRAPH BY AUTHOR.

FIGURE 54. COMPLETED FRAME WITH LOWER LEVEL FLOORING INSTALLED. PHOTOGRAPH BY AUTHOR.
FIGURE 55. STRUCTURAL CHASSIS DURING INSTALLATION OF SECOND FLOOR/ROOF PANELS. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE).

FIGURE 56. STRUCTURAL CHASSIS DURING INSTALLATION OF SECOND FLOOR/ROOF PANELS. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE).

FIGURE 57. ASSEMBLED LABORATORY BOX. PHOTOGRAPH BY AUTHOR.
FIGURE 58. ASSEMBLED LABORATORY BOX. PHOTOGRAPH BY AUTHOR.

FIGURE 59. FIELD REPAIRS DUE TO ADHESIVE FAILURE. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)

FIGURE 60. TENT FRAME ASSEMBLY. PHOTOGRAPH BY CHIP CLARK (WITH PERMISSION)
FIGURE 61. STRUCTURAL DETAIL. PHOTOGRAPH BY AUTHOR
FIGURE 62. LABORATORY BOX WITH SUPERSTRUCTURE FRAME INSTALLED. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)
FIGURE 63. TENSIONING OF FABRIC SUPERSTRUCTURE DURING INSTALLATION. PHOTOGRAPH BY AUTHOR
FIGURE 64. TENSIONING OF FABRIC SUPERSTRUCTURE DURING INSTALLATION. PHOTOGRAPH BY AUTHOR.

FIGURE 65. 2000 LITER NON-POTABLE WATER STORAGE TANK. PHOTOGRAPH BY AUTHOR.

FIGURE 66. A TANGLED MESS OF WATER PIPING AND CIRCUS TENT. PHOTOGRAPH BY AUTHOR.
FIGURE 67. FIELD REPAIR AND ASSEMBLY OF HELICAL WATER PUMP. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE).

FIGURE 68. THIS IS THE FIRST TIME HOSE CLAMPS WERE USED RELATIVELY APPROPRIATELY. PHOTOGRAPH BY AUTHOR.

FIGURE 69. FIELD DESIGNED AND CONSTRUCTED PORTABLE WATER PUMPING STATION. PHOTOGRAPH BY AUTHOR.
FIGURE 70.
WASTE MANAGEMENT INFRASTRUCTURE UNDER CONSTRUCTION. PHOTOGRAPH BY AUTHOR.

FIGURE 71.
THE PV-POTTY HOUSES BATHROOM FACILITIES, STORAGE, AND SUPPORT THE PHOTO-VOLTIC PANELS. PHOTOGRAPH BY AUTHOR.
FIGURE 72. THE PV-POTTY HOUSES BATHROOM FACILITIES, STORAGE, AND SUPPORT THE PHOTOVOLTAIC PANELS. PHOTOGRAPH BY AUTHOR.

FIGURE 73. UTILITY UMBILICAL FEEDS THE BATTERY BANK THAT IS INSTALLED UNDER THE LABORATORY. PHOTOGRAPH BY AUTHOR.

FIGURE 74. FIRST NIGHT IN THE LAB WITH POWER. BEARDS AT THREE WEEKS. PHOTOGRAPH BY AUTHOR.
FIGURE 75. FIRST NIGHT IN THE LAB WITH POWER. BEARDS AT THREE WEEKS. PHOTOGRAPH BY AUTHOR.

FIGURE 76. OPTIONAL VENTILATION SHAFT CONNECTS THE LOWER LEVEL LAB SPACE AND UPPER LEVEL LIVING AREAS. PHOTO BY CHIP CLARK (WITH PERMISSION)

FIGURE 77. UPPER LEVEL LIVING SPACE WITH WALKABLE VENTILATION GRATING. PHOTOGRAPH BY AUTHOR.

FIGURE 78. COMPLETED PLUG PROTOTYPE IN MAHALE. PHOTOGRAPH BY AUTHOR.
FIGURE 79. COMPLETED PLUG PROTOTYPE IN MAHALE. PHOTOGRAPH BY AUTHOR.

FIGURE 80. COMPLETED PLUG COMPOUND INCLUDING PV-POTTY AND LAB/LIVING UNIT. PHOTOGRAPH BY DR. JATINDER SINGH (FAIR USE)
FIGURE 81. First Night in the Lab with Power. Photograph by Author.

FIGURE 82. A Gift of Fish from the Son of a Medicine Man. Refrigerated in the Lab Over Night and Cook the Next Morning. Photograph by Dr. Jatinder Singh (Fair Use).

FIGURE 83. Completed Plug Prototype in Mahale. Photograph by Author.

FIGURE 84. Project Embarc at Norwich University. Photograph Jennifer Langille (With Permission).
FIGURE 85. Awaiting a flight at the Kigoma Airport. Photograph by Chip Clark (with permission).