Title page for ETD etd-11298-10286

Type of Document Master's Thesis
Author Hayes, Michael David
Author's Email Address mdhayes@vt.edu
URN etd-11298-10286
Title Characterization and Modeling of a Fiber-Reinforced Polymeric Composite Structural Beam and Bridge Structure for Use in the Tom's Creek Bridge Rehabilitation Project
Degree Master of Science
Department Engineering Mechanics
Advisory Committee
Advisor Name Title
Lesko, John Jack Committee Chair
Love, Brian J. Committee Member
Weyers, Richard E. Committee Member
  • pultruded composites
  • pultruded structural shapes
  • hybrid composite beam
  • fiber-reinforced polymer (FRP)
  • Composite materials
  • bridge rehabilitation
  • shear deformation
Date of Defense 1998-12-12
Availability unrestricted

Fiber reinforced polymeric (FRP) composite materials are beginning to find use in construction and infrastructure applications. Composite members may potentially provide more durable replacements for steel and concrete in primary and secondary bridge structures, but the experience with composites in these applications is minimal. Recently, however, a number of groups in the United States have constructed short-span traffic bridges utilizing FRP members. These demonstration cases will facilitate the development of design guidelines and durability data for FRP materials. The Tom's Creek Bridge rehabilitation is one such project that utilizes a hybrid FRP composite beam in an actual field application.

This thesis details much of the experimental work conducted in conjunction with the Tom's Creek Bridge rehabilitation. All of the composite beams used in the rehabilitation were first proof tested in four-point bending. A mock-up of the bridge was then constructed in the laboratory using the actual FRP beams and timber decking. The mock-up was tested in several static loading schemes to evaluate the bridge response under HS20 loading. The lab testing indicated a deflection criterion of nearly L/200; the actual field structure was stiffer at L/450. This was attributed to the difference in boundary conditions for the girders and timber panels.

Finally, the bridge response was verified with an analytical model that treats the bridge structure as a wood beam resting upon discrete elastic springs. The model permits both bending and torsional stiffness in the composite beams, as well as shear deformation. A parametric study was conducted utilizing this model and a mechanics of laminated beam theory to provide recommendations for alternate bridge designs and modified composite beam designs.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  thesis_of_Michael_Hayes.PDF 2.43 Mb 00:11:15 00:05:47 00:05:03 00:02:31 00:00:12

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.