Title page for ETD etd-12112007-190833

Type of Document Master's Thesis
Author Jones, Brenton Michael
URN etd-12112007-190833
Title Three-Dimensional Finite Difference Analysis of Geosynthetic Reinforcement Used in Column-Supported Embankments
Degree Master of Science
Department Civil Engineering
Advisory Committee
Advisor Name Title
Plaut, Raymond H. Committee Chair
Filz, George M. Committee Member
Sotelino, Elisa D. Committee Member
  • finite difference
  • pile support
  • plate
  • geosynthetic reinforcement
Date of Defense 2007-11-28
Availability unrestricted
Column-supported, geosynthetic-reinforced embankments provide effective geotechnical foundations for applications in areas of weak subgrade soils. The system consists of a soil bridging layer with one or more embedded layers of geosynthetic reinforcement supported by driven or deep mixed columnar piles. The geosynthetic promotes load transfer within the bridging layer to the columns, allowing for larger column spacings and varied alignments. This technique is generally used when differential settlements of the embankment or adjacent structures are a concern and to minimize construction time.

Recent increase in the popularity of this composite system has generated the need to further investigate its behavior and soil-structure interaction. Current models of geosynthetics are oversimplified and do not represent the true three-dimensional nature of the material. Such simplifications include treating the geosynthetic as a one-dimensional cable as well as neglecting stress concentrations and pile orientations. In this thesis, a complete three-dimensional analysis of the geosynthetic is performed.

The geosynthetic was modeled as a thin flexible plate in a single square unit cell of the embankment. The principle of minimum potential energy was then applied, utilizing central finite difference equations. Energy components from vertical loading, soil and column support, as well as bending and membrane stiffness of the geosynthetic are considered. Three pile orentation types were implemented: square piles, circular piles, and square piles rotated 45° to the edges of the unit cell. Each of the pile orientations was analyzed using two distinct

parameter sets that are investigated in previously published and ongoing research. Vertical and in-plane deflections, stress resultants, and strains were determined and compared to other geosynthetic models and design guides. Results of each parameter set and pile orientation were also compared to provide design recommendations for geosynthetic-reinforced column-supported embankments.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Brent_Jones_Thesis.pdf 6.88 Mb 00:31:52 00:16:23 00:14:20 00:07:10 00:00:36

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.