Title page for ETD etd-121399-174239

Type of Document Master's Thesis
Author Dalrymple, Amy Janel
URN etd-121399-174239
Title The Effect of Adhesion on the Contact of an Elastica with a Rigid Surface
Degree Master of Science
Department Civil Engineering
Advisory Committee
Advisor Name Title
Plaut, Raymond H. Committee Chair
Dillard, David A. Committee Member
Holzer, Siegfried M. Committee Member
  • Work of Adhesion
  • Elastica
  • JKR Analysis
  • Surface Energy
  • DMT Analysis
Date of Defense 1999-12-08
Availability unrestricted
The understanding of topics such as friction, wear, lubrication, and adhesive bonds is dependent on the ability to measure surface and interfacial energies. The surface energies of liquids may be measured accurately using a variety of techniques; however, surface energies of solids are much more difficult to accurately measure. In an attempt to develop a method that can be used to measure surface and interfacial energies of solids, this thesis proposes the use of a elastica. The elastica acts as an extremely flexible beam and provides a structure that will permit measurable deformation of the solid by relatively small surface attractions. The ends of the elastica are lifted, bent, and clamped vertically at an equal height and specified distance apart. They are then moved downward, allowing the strip to make contact with a flat, rigid, horizontal surface.

Two adhesion models are investigated. First, a JKR-type analysis, which examines the effect of adhesion forces that exist within the area of contact between the elastica and the rigid surface, is considered. Various values for the work of adhesion are examined. A DMT-type analysis, which assumes that the adhesion forces act in the region just outside of the contact area, is also considered. Results are obtained for linear and constant forces. Various values for the maximum DMT force and the vertical separation between the elastica and the rigid substrate at which the adhesion forces terminate are examined. Results from the two types of analyses are compared.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Thesis-lw2.pdf 1.04 Mb 00:04:47 00:02:27 00:02:09 00:01:04 00:00:05

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.