Title page for ETD etd-12172007-185430

Type of Document Master's Thesis
Author Nune, Rakesh
Author's Email Address nune@vt.edu
URN etd-12172007-185430
Title Path Prediction and Path Diversion Identifying Methodologies for Hazardous Materials Transported by Malicious Entities
Degree Master of Science
Department Civil Engineering
Advisory Committee
Advisor Name Title
Murray-Tuite, Pamela M. Committee Chair
Abbas, Montasir M. Committee Member
Hancock, Kathleen L. Committee Member
  • route algorithm
  • Optimization
  • Pattern classification
  • Hijacking
  • Neural network
  • Hazardous materials
Date of Defense 2007-12-05
Availability unrestricted
Safe and secure transportation of hazardous materials (hazmat) is a challenging issue in terms of optimizing risk to society and simultaneously making the shipment delivery economical. The most important safety concern of hazardous material transportation is accidents causing multiple causalities. The potential risk to society from hazmat transportation has led to the evolution of a new threat from terrorism. Malicious entities can turn hazmat vehicles into weapons causing explosions in high profile locations.

The present research is divided into two parts. First, a neural network model is developed to identify when a hazmat truck deviates from its pre-specified path based on its location in the road network. The model identifies abnormal diversions in hazmat carriers’ paths considering normal diversions arising due to incidents. The second part of this thesis develops a methodology for predicting different paths that could be taken by malicious entities heading towards a target after successfully hijacking a hazmat vehicle. The path prediction methodology and the neural network methodology are implemented on the network between Baltimore, Maryland and Washington, DC.

The trained neural network model classified nodes in the network with a satisfactory performance .The path prediction algorithm was used to calculate the paths to two targets located at the International Dulles Airport and the National Mall in Washington, DC. Based on this research, the neural network methodology is a promising technology for detecting a hijacked vehicle in its initial stages of diversion from its pre-specified path. Possible paths to potential targets are plotted and points of overlap among paths are identified. Overlaps are critical locations where extra security measures can be taken for preventing destruction. Thus, integrating both models gives a comprehensive methodology for detecting the initial diversion and then predicting the possible paths of malicious entities towards targets and could provide an important tool for law enforcement agencies minimizing catastrophic events.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  rakeshnune_updated_1172008.pdf 3.98 Mb 00:18:24 00:09:28 00:08:17 00:04:08 00:00:21

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.