Title page for ETD etd-12192010-172241

Type of Document Dissertation
Author Sarnoski, Paul J.
Author's Email Address sarnospj@vt.edu
URN etd-12192010-172241
Title Application and Characterization of Bioactive Compounds in Peanut Skins, a Waste Product of Virginia Agriculture
Degree PhD
Department Food Science and Technology
Advisory Committee
Advisor Name Title
O'Keefe, Sean F. Committee Chair
Boyer, Renee R. Committee Member
Eigel, William N. III Committee Member
Tanko, James M. Committee Member
  • liquid chromatography
  • peanut
  • by-product
  • yeast
  • optical density
  • mass spectrometry
Date of Defense 2010-12-07
Availability unrestricted
Peanut skins have long been a waste product of the peanut industry. The aim of this project was to find suitable applications for this rich source of natural bioactive compounds. Solvent extracts of peanut skins and a multistep solvent extraction process to yield oligiomeric procyanidin (OPC) extracts were found to be inhibitory towards three types of yeasts (Saccharomyces cerevisiae, Zygosaccharomyces bailli, and Zygosaccharomyces bisporus). All extracts were devoid of solvents that may have interfered with the results. The OPC extract exhibited the highest inhibitory effect, and was chosen for fractionation. Fractionation was conducted by means of a silica or size exclusion high performance liquid chromatography (HPLC) column. Fractions were then subjected to a yeast growth curve assay to determine the active fractions. The fractions were then characterized by liquid chromatography- mass spectrometry (LC-MS). Negative mode electrospray MS determined the fractions to contain mostly procyanidins but also proanthocyanidins. Since it is possible for multiple compounds to display the same molecular ion, multistep MS and retention time differences were utilized to tentatively identify the compounds based upon their fragmentation schemes. However, co-elution was prominent, thus specific compounds responsible for yeast growth inhibition could not be determined. The yeast inhibition assay demonstrated that the procyanidin dimers up to tetramers had the best anti-yeast capabilities.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Sarnoski_PJ_D_2010.pdf 2.37 Mb 00:10:58 00:05:38 00:04:56 00:02:28 00:00:12

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.