Title page for ETD etd-12262013-114321


Type of Document Master's Thesis
Author Perez, Kevin Blake
Author's Email Address kbp297@vt.edu
URN etd-12262013-114321
Title Hybridization of PolyJet and Direct Write for the Direct Manufacture of Functional Electronics in Additively Manufactured Components
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Christopher B. Williams Committee Chair
Jan Helge Bøhn Committee Member
Kathleen Meehan Committee Member
Keywords
  • Direct Write
  • Component Embedding
  • Printed Electronics
  • Additive Manufacturing
  • Conductive Ink
Date of Defense 2013-12-18
Availability unrestricted
Abstract
The layer-by-layer nature of additive manufacturing (AM) allows for access to the entire build volume of a component during manufacture including the internal structure. Voids are accessible during the build process and allow for components to be embedded and sealed with subsequently printed layers. This process, in conjunction with direct write (DW) of conductive materials, enables the direct manufacture of parts featuring embedded electronics, including interconnects and sensors.

The scope of previous works in which DW and AM processes are combined has been limited to single material AM processes. The PolyJet process is assessed for hybridization with DW because of its multi-material capabilities. The PolyJet process is capable of simultaneously depositing different materials, including rigid and elastomeric photopolymers, which enables the design of flexible features such as membranes and joints. In this work, extrusion-based DW is integrated with PolyJet AM technology to explore opportunities for embedding conductive materials on rigid and elastomeric polymer substrates. Experiments are conducted to broaden the understanding of how silver-loaded conductive inks behave on PolyJet material surfaces.

Traces of DuPont 5021 conductive ink as small as 750μm wide and 28μm tall are deposited on VeroWhite+ and TangoBlack+ PolyJet material using a Nordson EFD high-precision fluid dispenser. Heated drying at 55°C is found to accelerate material drying with no significant effect on the conductor’s geometry or conductivity. Contact angles of the conductive ink on PolyJet substrates are measured and exhibit a hydrophilic interaction, indicating good adhesion. Encapsulation is found to negatively impact conductivity of directly written conductors when compared to traces deposited on the surface. Strain sensing components are designed to demonstrate potential and future applications.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Perez_KB_T_2013.pdf 23.41 Mb 01:48:21 00:55:43 00:48:45 00:24:22 00:02:04
  Perez_KB_T_2013_permissions.pdf 3.83 Mb 00:17:43 00:09:07 00:07:58 00:03:59 00:00:20

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.